鱼眼镜头怎么利用OpenCV进行校准-创新互联
鱼眼镜头怎么利用OpenCV进行校准?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
创新互联主要从事成都网站建设、网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务谢家集,10多年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:1898082057501.简介
当我们使用的鱼眼镜头视角大于160°时,OpenCV中用于校准镜头“经典”方法的效果可能就不是和理想了。
02.相机参数获取
校准镜头其实只需要下面2个步骤。
利用OpenCV计算镜头的2个固有参数。OpenCV称它们为K和D,我们只需要知道它们是numpy数组外即可。
通过K和D对图像进行去畸变矫正。
计算K和D
下载棋盘格图案并将其打印在纸上(字母或A4尺寸)。大家要尽量将这张纸粘在坚硬且平坦的物体表面,例如一块硬纸板上。因为这里的关键是直线必须是直线。
将图案放在相机前面拍摄一些图像,图案要取在不同的位置和角度。这里的关键是图案需要以不同的方式出现失真(以便OpenCV尽可能多地了解镜头相关参数)。
现在我们只需要将此Python脚本片段复制到calibrate.py先前保存这些图像的文件夹中的文件中,就可以对其进行命名。
import cv2 assert cv2.__version__[0] == '3', 'The fisheye module requires opencv version >= 3.0.0' import numpy as np import os import glob CHECKERBOARD = (6,9) subpix_criteria = (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1) calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEW objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32) objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2) _img_shape = None objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. images = glob.glob('*.jpg') for fname in images: img = cv2.imread(fname) if _img_shape == None: _img_shape = img.shape[:2] else: assert _img_shape == img.shape[:2], "All images must share the same size." gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Find the chess board corners ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE) # If found, add object points, image points (after refining them) if ret == True: objpoints.append(objp) cv2.cornerSubPix(gray,corners,(3,3),(-1,-1),subpix_criteria) imgpoints.append(corners) N_OK = len(objpoints) K = np.zeros((3, 3)) D = np.zeros((4, 1)) rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)] tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)] rms, _, _, _, _ = \ cv2.fisheye.calibrate( objpoints, imgpoints, gray.shape[::-1], K, D, rvecs, tvecs, calibration_flags, (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6) ) print("Found " + str(N_OK) + " valid images for calibration") print("DIM=" + str(_img_shape[::-1])) print("K=np.array(" + str(K.tolist()) + ")") print("D=np.array(" + str(D.tolist()) + ")")
运行python calibrate.py。如果一切顺利,脚本将输出如下内容:
Found 36 images for calibration DIM=(1600, 1200) K=np.array([[781.3524863867165, 0.0, 794.7118000552183], [0.0, 779.5071163774452, 561.3314451453386], [0.0, 0.0, 1.0]]) D=np.array([[-0.042595202508066574], [0.031307765215775184], [-0.04104704724832258], [0.015343014605793324]])
03.图像畸变矫正
获得K和D后,我们可以对以下情况获得的图像进行失真矫正:我们需要取消失真的图像与校准期间捕获的图像具有相同的尺寸。也可以将边缘周围的某些区域裁剪掉,来保证使未失真图像的整洁。通过undistort.py使用以下python代码创建文件:
DIM=XXX K=np.array(YYY) D=np.array(ZZZ) def undistort(img_path): img = cv2.imread(img_path) h,w = img.shape[:2] map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K, DIM, cv2.CV_16SC2) undistorted_img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) cv2.imshow("undistorted", undistorted_img) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == '__main__': for p in sys.argv[1:]: undistort(p)
现在运行python undistort.py file_to_undistort.jpg。
看完上述内容,你们掌握鱼眼镜头怎么利用OpenCV进行校准的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!
网站栏目:鱼眼镜头怎么利用OpenCV进行校准-创新互联
文章出自:http://ybzwz.com/article/pohod.html