如何使用sparkContext转成RDD
这篇文章主要介绍“如何使用spark Context转成RDD”,在日常操作中,相信很多人在如何使用spark Context转成RDD问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”如何使用spark Context转成RDD”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联网站建设由有经验的网站设计师、开发人员和项目经理组成的专业建站团队,负责网站视觉设计、用户体验优化、交互设计和前端开发等方面的工作,以确保网站外观精美、成都网站建设、做网站易于使用并且具有良好的响应性。
一. 背景
在spark rdd转换算子中join和cogroup是有些需要区分的算子转换,这里使用示例来说明一下。
二. 示例
1.构建List示例数据
List> studentsList = Arrays.asList( new Tuple2 (1,"xufengnian"), new Tuple2 (2,"xuyao"), new Tuple2 (2,"wangchudong"), new Tuple2 (3,"laohuang") ); List > scoresList = Arrays.asList( new Tuple2 (1,100), new Tuple2 (2,90), new Tuple2 (3,80), new Tuple2 (1,101), new Tuple2 (2,91), new Tuple2 (3,81), new Tuple2 (3,71) );
2.使用sparkContext转成RDD
JavaPairRDDstudentsRDD = sc.parallelizePairs(studentsList); JavaPairRDD scoresRDD = sc.parallelizePairs(scoresList); //studentsRDD 为:List > //(1,xufengnian)(2,xuyao)(2,wangchudong)(3,laohuang),下面进行打印查看 studentsRDD.foreach(new VoidFunction >(){ public void call(Tuple2 tuple){ System.out.println(tuple._1);//1 2 3 System.out.println(tuple._2);// xufengnian xuyao laohuang } });
3.进行join
/* 前面数据 (1,xufengnian)(2,xuyao)(2,"wangchudong")(3,laohuang) (1,100)(2,90)(3,80)(1,101)(2,91)(3,81)(3,71) join之后: (1,(xufengnian,100))(1,(xufengnian,101))(3,(laohuang,80))(3,(laohuang,81))(3,(laohuang,71)) (2,(xuyao,90))(2,(xuyao,91))(2,(wangchudong,90))(2,(wangchudong,91)) */ JavaPairRDD> studentScores = studentsRDD.join(scoresRDD); //join为key相同的join,key不变,value变成(string,integer) studentScores.foreach(new VoidFunction >>() { private static final long serialVersionUID = 1L; @Override public void call(Tuple2 > student) throws Exception { System.out.println("student id: " + student._1);//1 1 3 System.out.println("student name: " + student._2._1);//xufengnian xufengnian laohuang System.out.println("student score: " + student._2._2);//100 101 80 System.out.println("==================================="); } });
4.进行cogroup
/* 前面的数据 (1,xufengnian)(2,xuyao)(2,"wangchudong")(3,laohuang) (1,100)(2,90)(3,80)(1,101)(2,91)(3,81)(3,71) cogroup之后: (1,([xufengnian],[100,101])) (3,([laohuang],[80,81,71])) (2,([xuyao,wangchudong],[90,91])) */ JavaPairRDD,Iterable >> studentScores2 = studentsRDD.cogroup(scoresRDD); studentScores2.foreach(new VoidFunction , Iterable >>>() { @Override public void call(Tuple2 , Iterable >> stu) throws Exception { System.out.println("stu id:"+stu._1);//1 3 System.out.println("stu name:"+stu._2._1);//[xufengnian] [laohuang] System.out.println("stu score:"+stu._2._2);//[100,101] [80,81,71] Iterable integers = stu._2._2; for (Iterator iter = integers.iterator(); iter.hasNext();) { Integer str = (Integer)iter.next(); System.out.println(str);//100 101 80 81 71 } System.out.println("==================================="); } });
到此,关于“如何使用spark Context转成RDD”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
新闻名称:如何使用sparkContext转成RDD
文章起源:http://ybzwz.com/article/pgiidi.html