加速,改成多线程转VOC矩形框和生成tfrecord-创新互联
改生成VOC2007矩形框:
成都创新互联-专业网站定制、快速模板网站建设、高性价比水富网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式水富网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖水富地区。费用合理售后完善,十余年实体公司更值得信赖。# -*- coding: utf-8 -*-
"""
Created on Thu Sep 19 14:51:00 2019
@author: Andrea
"""
import os
import numpy as np
import codecs
import json
from glob import glob
import cv2
import shutil
from sklearn.model_selection import train_test_split
import threading
#1.标签路径
labelme_path = "I:\\biaozhutuxiang\\fangdichan1106-banannanan" #原始labelme标注数据路径
saved_path = "I:\\biaozhutuxiang\\VOC2007-fangdichan1106-banannanan\\" #保存路径
#2.创建要求文件夹
if not os.path.exists(saved_path + "Annotations"):
os.makedirs(saved_path + "Annotations")
if not os.path.exists(saved_path + "JPEGImages/"):
os.makedirs(saved_path + "JPEGImages/")
if not os.path.exists(saved_path + "ImageSets/Main/"):
os.makedirs(saved_path + "ImageSets/Main/")
"""重新定义带返回值的线程类----民国档案------"""
class LoadThread(threading.Thread):
#class LoadThread_rep:
def __init__(self, json_file_):
super(LoadThread, self).__init__()
self.json_file_ = json_file_
def run(self):
if('.json' not in self.json_file_):
return self.json_file_
else:
json_file_ = self.json_file_.split('.json')[0]
print(json_file_)
json_filename = os.path.join(labelme_path , json_file_ + ".json")
print(json_filename)
json_file = json.load(open(json_filename,"r",encoding="utf-8"))
print(os.path.join(labelme_path , json_file_ +".jpg"))
height, width, channels = cv2.imread(os.path.join(labelme_path , json_file_ +".jpg")).shape
with codecs.open(saved_path + "Annotations/"+json_file_ + ".xml","w","utf-8") as xml:
xml.write('\n')
xml.write('\t' + 'UAV_data' + '\n')
xml.write('\t' + json_file_ + ".jpg" + '\n')
xml.write('\t\n')
xml.write('\t\tThe UAV autolanding\n')
xml.write('\t\tUAV AutoLanding\n')
xml.write('\t\tflickr\n')
xml.write('\t\tNULL\n')
xml.write('\t\n')
xml.write('\t\n')
xml.write('\t\tNULL\n')
xml.write('\t\tYuanyiqin\n')
xml.write('\t\n')
xml.write('\t\n')
xml.write('\t\t'+ str(width) + '\n')
xml.write('\t\t'+ str(height) + '\n')
xml.write('\t\t' + str(channels) + '\n')
xml.write('\t\n')
xml.write('\t\t0\n')
for multi in json_file["shapes"]:
points = np.array(multi["points"])
xmin = min(points[:,0])
xmax = max(points[:,0])
ymin = min(points[:,1])
ymax = max(points[:,1])
label = multi["label"]
if xmax <= xmin:
pass
elif ymax <= ymin:
pass
else:
xml.write('\t\n')
print(json_filename,xmin,ymin,xmax,ymax,label)
xml.write('')
self.json_file_
def get_result(self):
return self.json_file_
##3.获取待处理文件
#files = glob(labelme_path + "*.json")
#print(files)
#files = [i.split("/")[-1].split(".json")[0] for i in files]
#4.读取标注信息并写入 xml
threadnum = 64
if __name__ == '__main__':
# for json_file_ in os.listdir(labelme_path):
img_list = os.listdir(labelme_path)
img_length = len(img_list)
# threadnum = 4
for i in range(0,int(img_length/threadnum)+1):
# for i in range(int(img_length/threadnum)+1):
print('i,int(img_length/threadnum):',i,int(img_length/threadnum))
li = []
for j in range(i*threadnum,min(i*threadnum+threadnum,img_length)):
# for j in range(i*threadnum,min(i*threadnum+threadnum,img_length)):
json_file_ = img_list[j]
print('json_file_:',json_file_)
thread = LoadThread(json_file_)
li.append(thread)
thread.start()
for thread in li:
thread.join() # 一定要join,不然主线程比子线程跑的快,会拿不到结果
json_file_ = thread.get_result()
print('Down json_file_:',json_file_)
#5.复制图片到 VOC2007/JPEGImages/下
image_files = glob(labelme_path + "*.jpg")
print("copy image files to VOC007/JPEGImages/")
for image in image_files:
shutil.copy(image,saved_path +"JPEGImages/")
#6.split files for txt
txtsavepath = saved_path + "ImageSets/Main/"
ftrainval = open(txtsavepath+'/trainval.txt', 'w')
ftest = open(txtsavepath+'/test.txt', 'w')
ftrain = open(txtsavepath+'/train.txt', 'w')
fval = open(txtsavepath+'/val.txt', 'w')
total_files = glob("./VOC2007/Annotations/*.xml")
total_files = [i.split("/")[-1].split(".xml")[0] for i in total_files]
#test_filepath = ""
for file in total_files:
ftrainval.write(file + "\n")
#test
#for file in os.listdir(test_filepath):
# ftest.write(file.split(".jpg")[0] + "\n")
#split
train_files,val_files = train_test_split(total_files,test_size=0.15,random_state=42)
#train
for file in train_files:
ftrain.write(file + "\n")
#val
for file in val_files:
fval.write(file + "\n")
ftrainval.close()
ftrain.close()
fval.close()
#ftest.close()
改成多线程生成tfrecord:
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import sys
sys.path.append('../../')
import xml.etree.cElementTree as ET
import numpy as np
import tensorflow as tf
import math
import glob
import cv2
from libs.label_name_dict.label_dict import *
from help_utils.tools import *
import threading
import random
tf.app.flags.DEFINE_string('VOC_dir', '/home/yuanyq/Detect_DL/FPN_Tensorflow/data/io/VOC2007/', 'Voc dir')
tf.app.flags.DEFINE_string('xml_dir', 'Annotations', 'xml dir')
tf.app.flags.DEFINE_string('image_dir', 'JPEGImages', 'image dir')
tf.app.flags.DEFINE_string('save_name', 'train', 'save name')
tf.app.flags.DEFINE_string('save_dir', '../tfrecord/', 'save name')
tf.app.flags.DEFINE_string('img_format', '.jpg', 'format of image')
tf.app.flags.DEFINE_string('dataset', 'pascal', 'dataset')
FLAGS = tf.app.flags.FLAGS
threadnum = 128
global count
count = 0
class LoadThread(threading.Thread):
def __init__(self,xml,image_path,xml_path,writer):
super(LoadThread,self).__init__()
self.xml = xml
self.image_path = image_path
self.xml_path = xml_path
self.writer = writer
def run(self):
# to avoid path error in different development platform
xml = self.xml.replace('\\', '/')
img_name = xml.split('/')[-1].split('.')[0] + FLAGS.img_format
img_path = self.image_path + '/' + img_name
print('xml:',xml)
if not os.path.exists(img_path):
print('{} is not exist!'.format(img_path))
#return self.xml
img_height, img_width, gtbox_label = read_xml_gtbox_and_label(xml)
# img = np.array(Image.open(img_path))
img = cv2.imread(img_path)[:, :, ::-1]
feature = tf.train.Features(feature={
# do not need encode() in linux
'img_name': _bytes_feature(img_name.encode()),
# 'img_name': _bytes_feature(img_name),
'img_height': _int64_feature(img_height),
'img_width': _int64_feature(img_width),
'img': _bytes_feature(img.tostring()),
'gtboxes_and_label': _bytes_feature(gtbox_label.tostring()),
'num_objects': _int64_feature(gtbox_label.shape[0])
})郑州妇科医院 http://www.120zzzy.com/
example = tf.train.Example(features=feature)
self.writer.write(example.SerializeToString())
#view_bar('Conversion progress', count + 1, len(glob.glob(self.xml_path + '/*.xml')))
return self.xml
def get_result(self):
print(self.xml)
return self.xml
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def read_xml_gtbox_and_label(xml_path):
"""
:param xml_path: the path of voc xml
:return: a list contains gtboxes and labels, shape is [num_of_gtboxes, 5],
and has [xmin, ymin, xmax, ymax, label] in a per row
"""
tree = ET.parse(xml_path)
root = tree.getroot()
img_width = None
img_height = None
box_list = []
for child_of_root in root:
# if child_of_root.tag == 'filename':
# assert child_of_root.text == xml_path.split('/')[-1].split('.')[0] \
# + FLAGS.img_format, 'xml_name and img_name cannot match'
if child_of_root.tag == 'size':
for child_item in child_of_root:
if child_item.tag == 'width':
img_width = int(child_item.text)
if child_item.tag == 'height':
img_height = int(child_item.text)
if child_of_root.tag == 'object':
label = None
for child_item in child_of_root:
# print('child_item.tag:',child_item.tag)
# print('child_item.text:',child_item.text)
# print('NAME_LABEL_MAP:',NAME_LABEL_MAP)
if child_item.tag == 'name':
if(child_item.text == '0002X'):
child_item.text = '0002'
if(child_item.text == 'X0002'):
child_item.text = '0002'
if(child_item.text =='000Z1'):
child_item.text = '0001'
if(child_item.text =='A0001'):
child_item.text = '0001'
if(child_item.text =='c0002'):
child_item.text = '0002'
if(child_item.text !='0001' and child_item.text !='0002' and child_item.text !='0003'):
label = 1
else:
label = NAME_LABEL_MAP[child_item.text]
if child_item.tag == 'bndbox':
tmp_box = []
for node in child_item:
tmp_box.append(math.ceil(float(node.text)))
assert label is not None, 'label is none, error'
tmp_box.append(label)
box_list.append(tmp_box)
gtbox_label = np.array(box_list, dtype=np.int32)
return img_height, img_width, gtbox_label
def convert_pascal_to_tfrecord():
xml_path = FLAGS.VOC_dir + FLAGS.xml_dir
image_path = FLAGS.VOC_dir + FLAGS.image_dir
save_path = FLAGS.save_dir + FLAGS.dataset + '_' + FLAGS.save_name + '.tfrecord'
mkdir(FLAGS.save_dir)
# print('xml_path:',xml_path)
# print('save_path:',save_path)
# print('image_path:',image_path)
# writer_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB)
# writer = tf.python_io.TFRecordWriter(path=save_path, options=writer_options)
writer = tf.python_io.TFRecordWriter(path=save_path)
img_list = os.listdir(xml_path)
random.shuffle(img_list)
img_length = len(img_list)
for i in range(0,int(img_length/threadnum)+1):
li = []
for j in range(i*threadnum,min(i*threadnum+threadnum,img_length)):
xml = os.path.join(xml_path,img_list[j])
thread = LoadThread(xml,image_path,xml_path,writer)
thread.daemon = True
li.append(thread)
thread.start()
for thread in li:
thread.join() # 一定要join,不然主线程比子线程跑的快,会拿不到结果
xml = thread.get_result()
print('img_name done:',xml)
# to avoid path error in different development platform
print('\nConversion is complete!')
if __name__ == '__main__':
# xml_path = '../data/dataset/VOCdevkit/VOC2007/Annotations/000005.xml'
# read_xml_gtbox_and_label(xml_path)
convert_pascal_to_tfrecord()
另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
文章题目:加速,改成多线程转VOC矩形框和生成tfrecord-创新互联
文章出自:http://ybzwz.com/article/pcphd.html