pytorch如何实现inception_v3-创新互联
这篇文章将为大家详细讲解有关pytorch如何实现inception_v3,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
在龙胜等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供做网站、成都网站制作 网站设计制作按需定制制作,公司网站建设,企业网站建设,成都品牌网站建设,成都全网营销,外贸网站建设,龙胜网站建设费用合理。如下所示:
from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.optim as optim import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy import argparse print("PyTorch Version: ",torch.__version__) print("Torchvision Version: ",torchvision.__version__) # Top level data directory. Here we assume the format of the directory conforms # to the ImageFolder structure
数据集路径,路径下的数据集分为训练集和测试集,也就是train 以及val,train下分为两类数据1,2,val集同理
data_dir = "/home/dell/Desktop/data/切割图像" # Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception] model_name = "inception" # Number of classes in the dataset num_classes = 2#两类数据1,2 # Batch size for training (change depending on how much memory you have) batch_size = 32#batchsize尽量选取合适,否则训练时会内存溢出 # Number of epochs to train for num_epochs = 1000 # Flag for feature extracting. When False, we finetune the whole model, # when True we only update the reshaped layer params feature_extract = True # 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多 parser = argparse.ArgumentParser(description='PyTorch inception') parser.add_argument('--outf', default='/home/dell/Desktop/dj/inception/', help='folder to output images and model checkpoints') #输出结果保存路径 parser.add_argument('--net', default='/home/dell/Desktop/dj/inception/inception.pth', help="path to net (to continue training)") #恢复训练时的模型路径 args = parser.parse_args()
训练函数
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False): since = time.time() val_acc_history = [] best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 print("Start Training, InceptionV3!") with open("acc.txt", "w") as f1: with open("log.txt", "w")as f2: for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch+1, num_epochs)) print('*' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): if is_inception and phase == 'train': # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958 outputs, aux_outputs = model(inputs) loss1 = criterion(outputs, labels) loss2 = criterion(aux_outputs, labels) loss = loss1 + 0.4*loss2 else: outputs = model(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) f2.write('\n') f2.flush() # deep copy the model if phase == 'val': if (epoch+1)%50==0: #print('Saving model......') torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1)) f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, epoch_acc)) f1.write('\n') f1.flush() if phase == 'val' and epoch_acc > best_acc: f3 = open("best_acc.txt", "w") f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,epoch_acc)) f3.close() best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if phase == 'val': val_acc_history.append(epoch_acc) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model, val_acc_history #是否更新参数 def set_parameter_requires_grad(model, feature_extracting): if feature_extracting: for param in model.parameters(): param.requires_grad = False def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True): # Initialize these variables which will be set in this if statement. Each of these # variables is model specific. model_ft = None input_size = 0 if model_name == "resnet": """ Resnet18 """ model_ft = models.resnet18(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "alexnet": """ Alexnet """ model_ft = models.alexnet(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes) input_size = 224 elif model_name == "vgg": """ VGG11_bn """ model_ft = models.vgg11_bn(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes) input_size = 224 elif model_name == "squeezenet": """ Squeezenet """ model_ft = models.squeezenet1_0(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1)) model_ft.num_classes = num_classes input_size = 224 elif model_name == "densenet": """ Densenet """ model_ft = models.densenet121(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier.in_features model_ft.classifier = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "inception": """ Inception v3 Be careful, expects (299,299) sized images and has auxiliary output """ model_ft = models.inception_v3(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) # Handle the auxilary net num_ftrs = model_ft.AuxLogits.fc.in_features model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes) # Handle the primary net num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs,num_classes) input_size = 299 else: print("Invalid model name, exiting...") exit() return model_ft, input_size # Initialize the model for this run model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True) # Print the model we just instantiated #print(model_ft) #准备数据 data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(input_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(input_size), transforms.CenterCrop(input_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } print("Initializing Datasets and Dataloaders...") # Create training and validation datasets image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} # Create training and validation dataloaders dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=0) for x in ['train', 'val']} # Detect if we have a GPU available device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ''' 是否加载之前训练过的模型 we='/home/dell/Desktop/dj/inception_050.pth' model_ft.load_state_dict(torch.load(we)) ''' # Send the model to GPU model_ft = model_ft.to(device) params_to_update = model_ft.parameters() print("Params to learn:") if feature_extract: params_to_update = [] for name,param in model_ft.named_parameters(): if param.requires_grad == True: params_to_update.append(param) print("\t",name) else: for name,param in model_ft.named_parameters(): if param.requires_grad == True: print("\t",name) # Observe that all parameters are being optimized optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs #exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95) # Setup the loss fxn criterion = nn.CrossEntropyLoss() # Train and evaluate model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception")) ''' #随机初始化时的训练程序 # Initialize the non-pretrained version of the model used for this run scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False) scratch_model = scratch_model.to(device) scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9) scratch_criterion = nn.CrossEntropyLoss() _,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception")) # Plot the training curves of validation accuracy vs. number # of training epochs for the transfer learning method and # the model trained from scratch ohist = [] shist = [] ohist = [h.cpu().numpy() for h in hist] shist = [h.cpu().numpy() for h in scratch_hist] plt.title("Validation Accuracy vs. Number of Training Epochs") plt.xlabel("Training Epochs") plt.ylabel("Validation Accuracy") plt.plot(range(1,num_epochs+1),ohist,label="Pretrained") plt.plot(range(1,num_epochs+1),shist,label="Scratch") plt.ylim((0,1.)) plt.xticks(np.arange(1, num_epochs+1, 1.0)) plt.legend() plt.show() '''
pytorch的优点
1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单
关于“pytorch如何实现inception_v3”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
文章标题:pytorch如何实现inception_v3-创新互联
当前链接:http://ybzwz.com/article/jogde.html