pytorch如何实现mnist数据集的图像可视化及保存-创新互联

小编给大家分享一下pytorch如何实现mnist数据集的图像可视化及保存,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

创新互联公司专注于慈溪企业网站建设,响应式网站建设,商城网站定制开发。慈溪网站建设公司,为慈溪等地区提供建站服务。全流程按需设计网站,专业设计,全程项目跟踪,创新互联公司专业和态度为您提供的服务

如何将pytorch中mnist数据集的图像可视化及保存

导出一些库

import torch
import torchvision 
import torch.utils.data as Data 
import scipy.misc
import os
import matplotlib.pyplot as plt   
BATCH_SIZE = 50  
DOWNLOAD_MNIST = True

数据集的准备

#训练集测试集的准备

train_data = torchvision.datasets.MNIST(root='./mnist/', train=True,transform=torchvision.transforms.ToTensor(),              
  download=DOWNLOAD_MNIST, )
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)

将训练及测试集利用dataloader进行迭代

train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), requires_grad=True).type(torch.FloatTensor)[:20]/255 
test_y = test_data.test_labels[:20]#前两千张
 #具体查看图像形式为:
 
a_data, a_label = train_data[0]
print(type(a_data))#tensor 类型
#print(a_data)
print(a_label)

#把原始图片保存至MNIST_data/raw/下
save_dir="mnist/raw/"
if os.path.exists(save_dir)is False:
 os.makedirs(save_dir)
 
for i in range(20):
 image_array,_=train_data[i]#打印第i个
 image_array=image_array.resize(28,28)
 filename=save_dir + 'mnist_train_%d.jpg' % i#保存文件的格式
 print(filename)
 print(train_data.train_labels[i])#打印出标签
 scipy.misc.toimage(image_array,cmin=0.0,cmax=1.0).save(filename)#保存图像

pytorch如何实现mnist数据集的图像可视化及保存

pytorch如何实现mnist数据集的图像可视化及保存

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

看完了这篇文章,相信你对“pytorch如何实现mnist数据集的图像可视化及保存”有了一定的了解,如果想了解更多相关知识,欢迎关注创新互联成都网站设计公司行业资讯频道,感谢各位的阅读!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前名称:pytorch如何实现mnist数据集的图像可视化及保存-创新互联
本文URL:http://ybzwz.com/article/jeisg.html