kafkajavaAPI入库程序的实现方法
这篇文章主要讲解了“kafka javaAPI入库程序的实现方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“kafka javaAPI入库程序的实现方法”吧!
十年的金堂县网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。网络营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整金堂县建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联公司从事“金堂县网站设计”,“金堂县网站推广”以来,每个客户项目都认真落实执行。
讲解
maven导包
org.apache.kafka kafka-clients 2.3.0
连接kafka
Properties props = new Properties(); props.put("acks", "all"); //保证所有副本接受到消息 props.put("bootstrap.servers", Config.ipList); //可设置多个 props.put("key.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put("retries", "2"); KafkaProducerproduce= new KafkaProducer (props);
kerberos认证
kerberos是大数据平台的安全认证策略,可在项目启动时先一步完成。这里介绍两种实现方式。
方式一
指定认证文件
//加载keberos配置文件 System.setProperty("java.security.krb5.conf", "/etc/krb5.conf"); //加载kerberos用户文件 System.setProperty("java.security.auth.login.config", "/etc/kafka/conf/kafka_jaas.conf");
方式二
某些时候,考虑到用户切换,不同机器,有不同的用户信息,每个都要通过配置文件设置,比较麻烦,考虑使用java的启动的临时文件功能(主要是炫技——微笑)。
//加载keberos配置文件 System.setProperty("java.security.krb5.conf", "/etc/krb5.conf"); KafkaUtil.configureJAAS(Config.tabFile, Config.principal); //用户和认证文件 /** * 生成jaas.conf临时文件 * @param keyTab tab认证文件位置 * @param principal 认证用户 */ public static void configureJAAS(String keyTab, String principal) { String JAAS_TEMPLATE = "KafkaClient {\n" + "com.sun.security.auth.module.Krb5LoginModule required\n" + "useKeyTab=true\n" + "keyTab=\"%1$s\"\n" + "principal=\"%2$s\";\n" + "};"; String content = String.format(JAAS_TEMPLATE, keyTab, principal); File jaasConf = null; PrintWriter writer = null; try { jaasConf = File.createTempFile("jaas", ".conf"); writer = new PrintWriter(jaasConf); writer.println(content); } catch (IOException e) { e.printStackTrace(); } finally { if (writer != null) { writer.close(); } jaasConf.deleteOnExit(); } System.setProperty("java.security.auth.login.config", jaasConf.getAbsolutePath()); }
应用
实际线上使用时,考虑到数据传输效率和稳定性,要做以下优化。
传输类为线程类,线程池管理,增加传输效率。
批量上传数据。
添加Callback处理机制,避免数据丢失。
上传线程类如下。
public class Performance extends Thread{ private final static Logger log = LoggerFactory.getLogger(Performance.class); private List> recordList; public Performance(List > recordList) { this.recordList=recordList; } /** *入库测试方法 */ public static void test() { log.info("Kafka Tool Test"); try { /* parse args */ String topicName ="test40"; /*总发包数*/ long numRecords = 10000000000L; /*包大小*/ int recordSize = 1500; /*每次最多发送包数*/ int throughput = 10000000; Properties props = new Properties(); props.put("acks", "1"); props.put("bootstrap.servers","ip:6667,ip:6667"); props.put("sasl.kerberos.service.name", "kafka"); props.put("security.protocol", "SASL_PLAINTEXT"); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.ByteArraySerializer"); KafkaProducer producer = new KafkaProducer (props); /* 创建测试数据 */ byte[] payload = new byte[recordSize]; Random random = new Random(0); for (int i = 0; i < payload.length; ++i) payload[i] = (byte) (random.nextInt(26) + 65); /*创建测试数据发送对象*/ ProducerRecord record = new ProducerRecord (topicName, payload); /*测试数据模型 包总数*/ Stats stats = new Stats(numRecords, 5000); /*启动时间*/ long startMs = System.currentTimeMillis(); /*帮助生成者发送流量类 每次最多发送包数 时间*/ ThroughputThrottler throttler = new ThroughputThrottler(throughput, startMs); for (int i = 0; i < numRecords; i++) { long sendStartMs = System.currentTimeMillis(); Callback cb = stats.nextCompletion(sendStartMs, payload.length, stats,record.topic(),record.value()); producer.send(record, cb); if (throttler.shouldThrottle(i, sendStartMs)) { throttler.throttle(); } } /* 结束任务 */ producer.close(); stats.printTotal(); } catch (Exception e) { log.info("Test Error:"+e); } } /** * 实际入库方法 */ @Override public void run() { // log.info("Start To Send:"); super.run(); KafkaUtil kafkaUtil=new KafkaUtil(); KafkaProducer produce=kafkaUtil.create(); //总包数 long size=recordList.size(); // size=10000000000L; /*每次最多发送包数*/ int throughput = 900000; // throughput = 10000000; /*测试数据模型 包总数*/ Stats stats = new Stats(size, 5000); /*启动时间*/ long startMs = System.currentTimeMillis(); /*帮助生成者发送流量类 每次最多发送包数 时间*/ ThroughputThrottler throttler = new ThroughputThrottler(throughput, startMs); int i=0; for (ProducerRecord record:recordList) { long sendStartMs = System.currentTimeMillis(); //参数说明:发送数据时间 数据长度 数据模型类 Callback cb = stats.nextCompletion(sendStartMs, record.value().length, stats,record.topic(),record.value()); produce.send(record,cb); if (throttler.shouldThrottle(i, sendStartMs)) { throttler.throttle(); } i++; } produce.close(); // stats.printTotal(); // log.info("End to Send"); log.info("Finish Data To Send"); LogModel.sendNum++; } private static class Stats { private long start; private long windowStart; private int[] latencies; private int sampling; private int iteration; private int index; private long count; private long bytes; private int maxLatency; private long totalLatency; private long windowCount; private int windowMaxLatency; private long windowTotalLatency; private long windowBytes; private long reportingInterval; public Stats(long numRecords, int reportingInterval) { this.start = System.currentTimeMillis(); this.windowStart = System.currentTimeMillis(); this.index = 0; this.iteration = 0; this.sampling = (int) (numRecords / Math.min(numRecords, 500000)); this.latencies = new int[(int) (numRecords / this.sampling) + 1]; this.index = 0; this.maxLatency = 0; this.totalLatency = 0; this.windowCount = 0; this.windowMaxLatency = 0; this.windowTotalLatency = 0; this.windowBytes = 0; this.totalLatency = 0; this.reportingInterval = reportingInterval; } public void record(int iter, int latency, int bytes, long time) { this.count++; this.bytes += bytes; this.totalLatency += latency; this.maxLatency = Math.max(this.maxLatency, latency); this.windowCount++; this.windowBytes += bytes; this.windowTotalLatency += latency; this.windowMaxLatency = Math.max(windowMaxLatency, latency); if (iter % this.sampling == 0) { this.latencies[index] = latency; this.index++; } /* maybe report the recent perf */ if (time - windowStart >= reportingInterval) { printWindow(); newWindow(); } } public Callback nextCompletion(long start, int bytes, Stats stats,String topic,byte[] data) { Callback cb = new PerfCallback(this.iteration, start, bytes, stats,topic,data); this.iteration++; return cb; } /** * 传输效率反馈 */ public void printWindow() { long ellapsed = System.currentTimeMillis() - windowStart; double recsPerSec = 1000.0 * windowCount / (double) ellapsed; double mbPerSec = 1000.0 * this.windowBytes / (double) ellapsed / (1024.0 * 1024.0); System.out.printf("%d spend time,%d records sent, %.1f records/sec (%.2f MB/sec), %.1f ms avg latency, %.1f max latency.\n", ellapsed, windowCount, recsPerSec, mbPerSec, windowTotalLatency / (double) windowCount, (double) windowMaxLatency); } public void newWindow() { this.windowStart = System.currentTimeMillis(); this.windowCount = 0; this.windowMaxLatency = 0; this.windowTotalLatency = 0; this.windowBytes = 0; } /** * 传输效率 */ public void printTotal() { long elapsed = System.currentTimeMillis() - start; double recsPerSec = 1000.0 * count / (double) elapsed; double mbPerSec = 1000.0 * this.bytes / (double) elapsed / (1024.0 * 1024.0); int[] percs = percentiles(this.latencies, index, 0.5, 0.95, 0.99, 0.999); System.out.printf("%d spend time,%d records sent, %f records/sec (%.2f MB/sec), %.2f ms avg latency, %.2f ms max latency, %d ms 50th, %d ms 95th, %d ms 99th, %d ms 99.9th.\n", elapsed, count, recsPerSec, mbPerSec, totalLatency / (double) count, (double) maxLatency, percs[0], percs[1], percs[2], percs[3]); } private static int[] percentiles(int[] latencies, int count, double... percentiles) { int size = Math.min(count, latencies.length); Arrays.sort(latencies, 0, size); int[] values = new int[percentiles.length]; for (int i = 0; i < percentiles.length; i++) { int index = (int) (percentiles[i] * size); values[i] = latencies[index]; } return values; } } private static final class PerfCallback implements Callback { private final long start; private final int iteration; private final int bytes; private final Stats stats; private final String topic; private final byte[] data; public PerfCallback(int iter, long start, int bytes, Stats stats,String topic,byte[] data) { this.start = start; this.stats = stats; this.iteration = iter; this.bytes = bytes; this.topic=topic; this.data=data; } public void onCompletion(RecordMetadata metadata, Exception exception) { long now = System.currentTimeMillis(); int latency = (int) (now - start); this.stats.record(iteration, latency, bytes, now); if (exception != null){ ProducerRecord record=new ProducerRecord (topic,data); //将数据重新添加入数据队列,二次上传 ControlTask.recordList.add(record); log.error("Send Error And Second To Send",exception); } } } }
KafkaUtil.java
public class KafkaUtil { // private final static Logger log = LoggerFactory.getLogger(KafkaUtil.class); private KafkaProducerproduce; /** * 创建连接 * @return */ public KafkaProducer create(){ Properties props = new Properties(); props.put("acks", "all"); props.put("bootstrap.servers", Config.ipList); props.put("key.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer"); // props.put(ProducerConfig.MAX_BLOCK_MS_CONFIG, 120000); //增加等待时间 props.put("retries", "2"); //kerbores安全认证 if(Config.kerberos==0){ props.put("security.protocol", "SASL_PLAINTEXT"); props.put("sasl.mechanism", "GSSAPI"); props.put("sasl.kerberos.service.name", "kafka"); } produce = new KafkaProducer (props); return produce; } /** * 发送数据 * @param record * @param cb */ public void send(ProducerRecord record,Callback cb){ produce.send(record,cb); } /** * 关闭连接 * @param produce */ public void close(){ produce.flush(); produce.close(); } /** * 生成jaas.conf临时文件 * @param keyTab tab认证文件位置 * @param principal 认证用户 */ public static void configureJAAS(String keyTab, String principal) { String JAAS_TEMPLATE = "KafkaClient {\n" + "com.sun.security.auth.module.Krb5LoginModule required\n" + "useKeyTab=true\n" + "keyTab=\"%1$s\"\n" + "principal=\"%2$s\";\n" + "};"; String content = String.format(JAAS_TEMPLATE, keyTab, principal); File jaasConf = null; PrintWriter writer = null; try { jaasConf = File.createTempFile("jaas", ".conf"); writer = new PrintWriter(jaasConf); writer.println(content); } catch (IOException e) { e.printStackTrace(); } finally { if (writer != null) { writer.close(); } jaasConf.deleteOnExit(); } System.setProperty("java.security.auth.login.config", jaasConf.getAbsolutePath()); } }
感谢各位的阅读,以上就是“kafka javaAPI入库程序的实现方法”的内容了,经过本文的学习后,相信大家对kafka javaAPI入库程序的实现方法这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!
标题名称:kafkajavaAPI入库程序的实现方法
当前路径:http://ybzwz.com/article/jdeijc.html