ReceiverTracker是怎么处理数据的
本篇内容介绍了“ReceiverTracker是怎么处理数据的”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
网站建设哪家好,找创新互联公司!专注于网页设计、网站建设、微信开发、微信小程序定制开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了曲靖免费建站欢迎大家使用!
ReceiverTracker可以以Driver中具体的算法计算出在具体的executor上启动Receiver。启动Receiver的方法是封装在一个task中运行,这个task是job中唯一的task。实质上讲,ReceiverTracker启动Receiver时封装成一个又一个的job。启动Receiver的方法中有一个ReceiverSupervisorImpl,ReceiverSupervisorImpl的start方法会导致Receiver早work节点上真正的执行。转过来通过BlockGenerator把接收到的数据放入block中,并通过ReceiverSupervisorImpl把block进行存储,然后把数据的元数据汇报给ReceiverTracker。
下面就讲ReceiverTracker在接收到数据之后具体怎么处理。
ReceiverSupervisorImpl把block进行存储是通过receivedBlockHandler来写的。
private val receivedBlockHandler: ReceivedBlockHandler = {
if (WriteAheadLogUtils.enableReceiverLog(env.conf)) {
...
new WriteAheadLogBasedBlockHandler(env.blockManager, receiver.streamId,
receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get)
} else {
new BlockManagerBasedBlockHandler(env.blockManager, receiver.storageLevel)
}
}
一种是通过WAL的方式,一种是通过BlockManager的方式。
/** Store block and report it to driver */
def pushAndReportBlock(
receivedBlock: ReceivedBlock,
metadataOption: Option[Any],
blockIdOption: Option[StreamBlockId]
) {
val blockId = blockIdOption.getOrElse(nextBlockId)
val time = System.currentTimeMillis
val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock)
logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms")
val numRecords = blockStoreResult.numRecords
val blockInfo = ReceivedBlockInfo(streamId, numRecords, metadataOption, blockStoreResult)
trackerEndpoint.askWithRetry[Boolean](AddBlock(blockInfo))
logDebug(s"Reported block $blockId")
}
把数据存储起来切向ReceiverTracker汇报。汇报的时候是元数据。
/** Information about blocks received by the receiver */
private[streaming] case class ReceivedBlockInfo(
streamId: Int,
numRecords: Option[Long],
metadataOption: Option[Any],
blockStoreResult: ReceivedBlockStoreResult
Sealed关键字的意思就是所有的子类都在当前的文件中
ReceiverTracker管理Receiver的启动、回收、接收汇报的元数据。ReceiverTracker在实例化之前必须所有的input stream都已经被added和streamingcontext.start()。因为ReceiverTracker要为每个input stream启动一个Receiver。
ReceiverTracker中有所有的输入数据来源和ID。
private val receiverInputStreams = ssc.graph.getReceiverInputStreams()
private val receiverInputStreamIds = receiverInputStreams.map { _.id }
ReceiverTracker的状态
/** Enumeration to identify current state of the ReceiverTracker */
object TrackerState extends Enumeration {
type TrackerState = Value
val Initialized, Started, Stopping, Stopped = Value
}
下面看一下ReceiverTracker在接收到ReceiverSupervisorImpl发送的AddBlock的消息后的处理。
case AddBlock(receivedBlockInfo) =>
if (WriteAheadLogUtils.isBatchingEnabled(ssc.conf, isDriver = true)) {
walBatchingThreadPool.execute(new Runnable {
override def run(): Unit = Utils.tryLogNonFatalError {
if (active) {
context.reply(addBlock(receivedBlockInfo))
} else {
throw new IllegalStateException("ReceiverTracker RpcEndpoint shut down.")
}
}
})
} else {
context.reply(addBlock(receivedBlockInfo))
}
先判断一下是不是WAL得方式,如果是就用线程池中的一个线程来回复addBlock,因为WAL非常消耗性能。否则就直接回复addBlock。
让后交给receiverBlockTracker 进行处理
/** Add new blocks for the given stream */
private def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
receivedBlockTracker.addBlock(receivedBlockInfo)
}
ReceiverBlockTracker是在Driver端管理blockInfo的。
/** Add received block. This event will get written to the write ahead log (if enabled). */
def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
try {
val writeResult = writeToLog(BlockAdditionEvent(receivedBlockInfo))
if (writeResult) {
synchronized {
getReceivedBlockQueue(receivedBlockInfo.streamId) += receivedBlockInfo
}
logDebug(s"Stream ${receivedBlockInfo.streamId} received " +
s"block ${receivedBlockInfo.blockStoreResult.blockId}")
} else {
logDebug(s"Failed to acknowledge stream ${receivedBlockInfo.streamId} receiving " +
s"block ${receivedBlockInfo.blockStoreResult.blockId} in the Write Ahead Log.")
}
writeResult
} catch {
case NonFatal(e) =>
logError(s"Error adding block $receivedBlockInfo", e)
false
}
}
writeToLog的代码很简单,首先判断是不是WAL得方式,如果是就把blockInfo写入到日志中,用于以后恢复数据。否则的话就直接返回true。然后就把block的信息放入streamIdToUnallocatedBlockQueues中。
private val streamIdToUnallocatedBlockQueues = new mutable.HashMap[Int, ReceivedBlockQueue]
这个数据结构很精妙,key是streamid,value是一个队列,把每一个stream接收的block信息分开存储。这样ReceiverBlockTracker就有了所有stream接收到的block信息。
/** Write an update to the tracker to the write ahead log */
private def writeToLog(record: ReceivedBlockTrackerLogEvent): Boolean = {
if (isWriteAheadLogEnabled) {
logTrace(s"Writing record: $record")
try {
writeAheadLogOption.get.write(ByteBuffer.wrap(Utils.serialize(record)),
clock.getTimeMillis())
true
} catch {
case NonFatal(e) =>
logWarning(s"Exception thrown while writing record: $record to the WriteAheadLog.", e)
false
}
} else {
true
}
}
详细看一下ReceiverBlockTracker的注释。这个class会追踪所有接收到的blocks,并把他们按batch分配,如果有需要这个class接收的所有action都可以写WAL中,如果指定了checkpoint的目录,当Driver崩溃了,ReceiverBlockTracker的状态(包括接收的blocks和分配的blocks)都可以恢复。如果实例化这个class的时候指定了checkpoint,就会从中读取之前保存的信息。
/**
* Class that keep track of all the received blocks, and allocate them to batches
* when required. All actions taken by this class can be saved to a write ahead log
* (if a checkpoint directory has been provided), so that the state of the tracker
* (received blocks and block-to-batch allocations) can be recovered after driver failure.
*
* Note that when any instance of this class is created with a checkpoint directory,
* it will try reading events from logs in the directory.
*/
private[streaming] class ReceivedBlockTracker(
下面看一下ReceiverTracker接收到CleanupOldBlocks后的处理。
case c: CleanupOldBlocks =>
receiverTrackingInfos.values.flatMap(_.endpoint).foreach(_.send(c))
ReceiverTracker接收到这条消息后会给它管理的每一个Receiver发送这个消息。ReceiverSupervisorImpl接收到消息后使用receivedBlockHandler清理数据。
private def cleanupOldBlocks(cleanupThreshTime: Time): Unit = {
logDebug(s"Cleaning up blocks older then $cleanupThreshTime")
receivedBlockHandler.cleanupOldBlocks(cleanupThreshTime.milliseconds)
}
ReceiverTracker还可以随时调整某一个streamID接收数据的速度,向对应的ReceiverSupervisorImpl发送UpdateRateLimit的消息。
case UpdateReceiverRateLimit(streamUID, newRate) =>
for (info <- receiverTrackingInfos.get(streamUID); eP <- info.endpoint) {
eP.send(UpdateRateLimit(newRate))
}
ReceiverSupervisorImpl接收到消息后。
case UpdateRateLimit(eps) =>
logInfo(s"Received a new rate limit: $eps.")
registeredBlockGenerators.foreach { bg =>
bg.updateRate(eps)
}
/**
* Set the rate limit to `newRate`. The new rate will not exceed the maximum rate configured by
* {{{spark.streaming.receiver.maxRate}}}, even if `newRate` is higher than that.
*
* @param newRate A new rate in events per second. It has no effect if it's 0 or negative.
*/
private[receiver] def updateRate(newRate: Long): Unit =
if (newRate > 0) {
if (maxRateLimit > 0) {
rateLimiter.setRate(newRate.min(maxRateLimit))
} else {
rateLimiter.setRate(newRate)
}
}
ReceiverTracker是一个门面设计模式,看似调用的是ReceiverTracker的功能,其实调用的是别的类的功能。
“ReceiverTracker是怎么处理数据的”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
本文标题:ReceiverTracker是怎么处理数据的
文章出自:http://ybzwz.com/article/jcccjp.html