SQL如何快速实现UCF

这篇文章主要介绍了SQL如何快速实现UCF,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

网站建设公司,为您提供网站建设,网站制作,网页设计及定制网站建设服务,专注于成都定制网页设计,高端网页制作,对白乌鱼等多个行业拥有丰富的网站建设经验的网站建设公司。专业网站设计,网站优化推广哪家好,专业网站推广优化,H5建站,响应式网站。

SQL

select uid1,uid2,sim from (     select uid1         ,uid2         ,cnt12 / sqrt(cnt1*cnt2) sim         ,row_number() over(partition by uid1 order by cnt12 / sqrt(cnt1*cnt2) desc) sim_rn     from (         select a.uid uid1             ,b.uid uid2             ,count(a.iid) cnt12          from tb_behavior a         join tb_behavior b         on a.iid = b.iid         where a.uid <> b.uid         group by a.uid,b.uid     ) a12     join (select uid,count(iid) cnt1 from tb_behavior group by uid) a1     on a12.uid1 = a1.uid     join (select uid,count(iid) cnt2 from tb_behavior group by uid) a2     on a12.uid1 = a2.uid ) tb_neighbour where sim > 0.1 and sim_rn <= 30

读者实现的话只需要把上面的tb_behavior表替换成自己业务的用户行为即可;iid,uid分别对应物品id和用户id;

根据共现相似度,即共同喜好的物品个数比上各自喜好物品总数乘积取平方;最后截断用户最相似的前30个邻居作为推荐的依据。

上面构造了邻居表,下面就是根据邻居的喜好为用户推荐了,具体sql如下:

select uid1,iid from (     select uid1         ,iid         ,max(sim) score         ,row_number() over(partition by uid1 order by max(sim) desc) user_rn     from tb_neighbour a12     join (select uid,iid from tb_behavior) a2     on a12.uid2 = a2.uid     join (select uid,collect_set(iid) iids1 from tb_behavior group by uid) a1     on a12.uid1 = a1.uid     where not array_contaions(iids1,a2.iid)     group by uid1,iid ) tb_rec where user_rn <= 500

这里说明下包括上面的top30邻居和用户top500的最大推荐列表都是工程优化,截断节约些存储;具体读者可以根据自己业务需要进行设置;

然后大概说下各个表的含义:a1表是用户已消费过的物品,a2表是用户每个邻居喜好的物品;那么也就是说从邻居喜好的物品中过滤掉已经消费的

物品整体根据共现相似度进行排序。

思考

但思路很简单、实际作者开发中总会遇到各种各样的问题,下面就捡几个主要的和大家一起讨论下:

  • 1.join引起的数据倾斜问题:tb_neighbour表很大,往往热点物品会占据80%的曝光和消费记录,如何解决?

  • 2.增量更新问题:上面的框架,tb_behavior表每次都是全量计算,是否能改造成增量更新邻居表和推荐结果,并减少计算时间呢?

join引起的数据倾斜问题

先思考问题1,既然我们目的是求相似邻居,物品join只是为了关联上一组用户对,那自然的想法是可以根据feed做近似采样、相似度精度也几乎无损失。

下面我试着实现下这种思路:

with tb_behavior_sample as (     select uid,iid      from (         select uid             ,iid             ,row_number() over(partition by iid order by rand()) feed_rn         from tb_behavior     ) bh     where feed_rn <= 50000 )   select uid1,uid2,sim from (     select uid1         ,uid2         ,cnt12 / sqrt(cnt1*cnt2) sim         ,row_number() over(partition by uid1 order by cnt12 / sqrt(cnt1*cnt2) desc) sim_rn     from (         select a.uid uid1             ,b.uid uid2             ,count(a.iid) cnt12          from tb_behavior_sample a         join tb_behavior_sample b         on a.iid = b.iid         where a.uid <> b.uid         group by a.uid,b.uid     ) a12     join (select uid,count(iid) cnt1 from tb_behavior group by uid) a1     on a12.uid1 = a1.uid     join (select uid,count(iid) cnt2 from tb_behavior group by uid) a2     on a12.uid1 = a2.uid ) tb_neighbour where sim > 0.1 and sim_rn <= 30

这里用了hive的with as语法,读者可自行查阅,篇幅有限,就不展开了;feed_rn就是随机采样了50000条,实际操作时读者可以先统计下item的分布、大概找到一个阈值;

比如取top10的item的出现次数作为阈值;那计算相似度时分子最多减小10,分母不变。这对大多数情况精度应该足够了,而且因为避免了数据倾斜,大大降低了计算时间。

增量更新问题

问题2是一个工程问题,lambda架构能使初始结果效果不错,可直接上线灰度了;在此基础上再加小时或者天增量;kappa架构相对就比较繁琐、需要一开始就设计增量流程。

精度方面也需要一定的累积;不过如何选择,读者可以根据自己的数据量和熟悉程度自行选择;作者这里仅以kappa架构说明。

重新review上面sql,我们发现我们仅需要记录下cnt12,cnt1,cnt2,iids1这些计算关键即可,其中iids2是用户邻居喜好的物品数组;数值类型可累加更新、

数组类型合并起来比较麻烦,一种解决方案是注册UDF;这里采取另一种这种的方案:把iids1合并成字符串,过滤的时候再分割为字符串数组。

with tb_behavior_sample_incr as (     select uid,iid      from (         select uid             ,iid             ,row_number() over(partition by iid order by rand()) feed_rn         from tb_behavior_incr     ) bh     where feed_rn <= 50000 )   insert overwrite table tb_neighbour select uid1,uid2,sim from (     select uid1         ,uid2         ,sum(cnt12) / sqrt(sum(cnt1)*sum(cnt2)) sim         ,row_number() over(partition by uid1 order by sum(cnt12) / sqrt(sum(cnt1)*sum(cnt2)) desc) sim_rn     from (         select uid1,uid2,cnt12,cnt1,cnt2         from tb_neighbour         union all         select a.uid uid1             ,b.uid uid2             ,count(a.iid) cnt12              ,cnt1             ,cnt2         from tb_behavior_sample_incr a         join tb_behavior_sample_incr b         on a.iid = b.iid         where a.uid <> b.uid         group by a.uid,b.uid      ) a12     join (select uid,count(iid) cnt1 from tb_behavior_incr group by uid) a1     on a12.uid1 = a1.uid     join (select uid,count(iid) cnt2 from tb_behavior_incr group by uid) a2     on a12.uid1 = a2.uid     group by uid1,uid2 ) tb_neighbour where sim > 0.1 and sim_rn <= 30

其中tb_behavior_sample_incr,tb_behavior_incr是相应tb_behavior_sample,tb_behavior的增量表;使用union all和group by聚合相同用户对的结果

kappa架构初次计算即是增量,不断累积每次增量的结果更新tb_neighbour;相当于lambda初始全量计算的一种回放,直至追到最新的时间分区。

insert overwrite table tb_user_consume select uid,substring_index(concat_ws(",",collect_list(iids1)),",",10000) iids1  from (     select uid,concat_ws(",",collect_set(cast(iid as string))) iids1     from tb_behavior_incr     union all     select uid,iids1     from tb_user_consume ) a group by uid  select uid1,iid from (     select uid1         ,iid         ,max(sim) score         ,row_number() over(partition by uid1 order by max(sim) desc) user_rn     from tb_neighbour a12     join (select uid,cast(iid as string) iid from tb_behavior_incr) a2     on a12.uid2 = a2.uid     join (select uid,split(iids1,",") iids1 from tb_user_consume) a1     on a12.uid1 = a1.uid     where not array_contaions(iids1,a2.iid)     group by uid1,iid ) tb_rec where user_rn <= 500

使用tb_user_consume缓存用户最近消费的前10000条记录,将用户邻居最新喜好物品推荐给用户。

感谢你能够认真阅读完这篇文章,希望小编分享的“SQL如何快速实现UCF”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!


文章标题:SQL如何快速实现UCF
网页URL:http://ybzwz.com/article/ijgepi.html