c++11线程需要互斥量的原因是什么

本篇内容介绍了“c++11线程需要互斥量的原因是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

成都创新互联公司专业成都网站建设、网站建设,集网站策划、网站设计、网站制作于一体,网站seo、网站优化、网站营销、软文平台等专业人才根据搜索规律编程设计,让网站在运行后,在搜索中有好的表现,专业设计制作为您带来效益的网站!让网站建设为您创造效益。

为什么需要互斥量

在多任务操作系统中,同时运行的多个任务可能都需要使用同一种资源。这个过程有点类似于,公司部门里,我在使用着打印机打印东西的同时(还没有打印完),别人刚好也在此刻使用打印机打印东西,如果不做任何处理的话,打印出来的东西肯定是错乱的。

#define _CRT_SECURE_NO_WARNINGS

#include 
#include 
#include 
#include 

// 打印机
void printer(const char *str)
{
    while(*str != '\0')
    {
        std::cout << *str;
        str++;
        std::this_thread::sleep_for(std::chrono::milliseconds(1000));
    }
    std::cout << std::endl;
}

// 线程一
void func1()
{
    const char *str = "hello";
    printer(str);
}

// 线程二
void func2()
{
    const char *str = "world";
    printer(str);
}


void mytest()
{
    std::thread t1(func1);
    std::thread t2(func2);

    t1.join();
    t2.join();

    return;
}

int main()
{
    mytest();

    system("pause");
    return 0;
}

独占互斥量std::mutex

互斥量的基本接口很相似,一般用法是通过lock()方法来阻塞线程,直到获得互斥量的所有权为止。在线程获得互斥量并完成任务之后,就必须使用unlock()来解除对互斥量的占用,lock()和unlock()必须成对出现。try_lock()尝试锁定互斥量,如果成功则返回true, 如果失败则返回false,它是非阻塞的。

#define _CRT_SECURE_NO_WARNINGS

#include 
#include 
#include 
#include 
#include 

std::mutex g_lock; //全局互斥锁对象,#include 

// 打印机
void printer(const char *str)
{
    g_lock.lock(); //上锁
    while(*str != '\0')
    {
        std::cout << *str;
        str++;
        std::this_thread::sleep_for(std::chrono::milliseconds(1000));
    }
    std::cout << std::endl;
    g_lock.unlock(); // 解锁
}

// 线程一
void func1()
{
    const char *str = "hello";
    printer(str);
}

// 线程二
void func2()
{
    const char *str = "world";
    printer(str);
}


void mytest()
{
    std::thread t1(func1);
    std::thread t2(func2);

    t1.join();
    t2.join();

    return;
}

int main()
{
    mytest();

    system("pause");
    return 0;
}

使用std::lock_guard可以简化lock/unlock的写法,同时也更安全,因为lock_guard在构造时会自动锁定互斥量,而在退出作用域后进行析构时就会自动解锁,从而避免忘了unlock操作。

#define _CRT_SECURE_NO_WARNINGS

#include 
#include 
#include 
#include 
#include 

std::mutex g_lock; //全局互斥锁对象,#include 

// 打印机
void printer(const char *str)
{
    std::lock_guard locker(g_lock); // lock_guard 上锁
    while(*str != '\0')
    {
        std::cout << *str;
        str++;
        std::this_thread::sleep_for(std::chrono::milliseconds(1000));
    }
    std::cout << std::endl;
    // 即将推出作用域 lock_guard 会自动解锁
}

// 线程一
void func1()
{
    const char *str = "hello";
    printer(str);
}

// 线程二
void func2()
{
    const char *str = "world";
    printer(str);
}


void mytest()
{
    std::thread t1(func1);
    std::thread t2(func2);

    t1.join();
    t2.join();

    return;
}

int main()
{
    mytest();

    system("pause");
    return 0;
}

原子操作

所谓的原子操作,取的就是“原子是最小的、不可分割的最小个体”的意义,它表示在多个线程访问同一个全局资源的时候,能够确保所有其他的线程都不在同一时间内访问相同的资源。也就是他确保了在同一时刻只有唯一的线程对这个资源进行访问。这有点类似互斥对象对共享资源的访问的保护,但是原子操作更加接近底层,因而效率更高。

#define _CRT_SECURE_NO_WARNINGS

#include 
#include 
#include 
#include 

//全局的结果数据
long total = 0;

//点击函数
void func()
{
    for(int i = 0;  i < 1000000; ++i)
    {
        // 对全局数据进行无锁访问
        total += 1;
    }
}


void mytest()
{
    clock_t start = clock();    // 计时开始

    //线程
    std::thread t1(func);
    std::thread t2(func);

    t1.join();
    t2.join();

    clock_t end = clock();    // 计时结束

    std::cout << "total = " << total << std::endl;
    std::cout << "time = " << end-start << " ms" << std::endl;


    return;
}

int main()
{
    mytest();

    system("pause");
    return 0;
}

由于线程间对数据的竞争而导致每次运行的结果都不一样。因此,为了防止数据竞争问题,我们需要对total进行原子操作。

通过互斥锁进行原子操作:

#define _CRT_SECURE_NO_WARNINGS

#include 
#include 
#include 
#include 
#include 

std::mutex g_lock;

//全局的结果数据
long total = 0;

//点击函数
void func()
{
    for(int i = 0;  i < 1000000; ++i)
    {
        g_lock.lock(); // 加锁
        total += 1;
        g_lock.unlock(); // 加锁
    }
}


void mytest()
{
    clock_t start = clock();    // 计时开始

    //线程
    std::thread t1(func);
    std::thread t2(func);

    t1.join();
    t2.join();

    clock_t end = clock();    // 计时结束

    std::cout << "total = " << total << std::endl;
    std::cout << "time = " << end-start << " ms" << std::endl;


    return;
}

int main()
{
    mytest();

    system("pause");
    return 0;
}

每次运行的结果都一样,只是耗时长点。

在新标准C++11,引入了原子操作的概念。

如果我们在多个线程中对这些类型的共享资源进行操作,编译器将保证这些操作都是原子性的,也就是说,确保任意时刻只有一个线程对这个资源进行访问,编译器将保证多个线程访问这个共享资源的正确性。从而避免了锁的使用,提高了效率。

#define _CRT_SECURE_NO_WARNINGS

#include 
#include 
#include 
#include 
#include 

//原子数据类型
std::atomic total(0); //需要头文件 #include 

//点击函数
void func()
{
    for(int i = 0;  i < 1000000; ++i)
    {
        // 
        total += 1;
    }
}


void mytest()
{
    clock_t start = clock();    // 计时开始

    //线程
    std::thread t1(func);
    std::thread t2(func);

    t1.join();
    t2.join();

    clock_t end = clock();    // 计时结束

    std::cout << "total = " << total << std::endl;
    std::cout << "time = " << end-start << " ms" << std::endl;


    return;
}

int main()
{
    mytest();

    system("pause");
    return 0;
}

原子操作的实现跟普通数据类型类似,但是它能够在保证结果正确的前提下,提供比mutex等锁机制更好的性能。

“c++11线程需要互斥量的原因是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


网站名称:c++11线程需要互斥量的原因是什么
URL链接:http://ybzwz.com/article/iiojpi.html