numpy中np.array()与np.asarray的区别有哪些
这篇文章主要为大家展示了“numpy中np.array()与np.asarray的区别有哪些”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“numpy中np.array()与np.asarray的区别有哪些”这篇文章吧。
创新互联建站10多年企业网站设计服务;为您提供网站建设,网站制作,网页设计及高端网站定制服务,企业网站设计及推广,对茶艺设计等多个方面拥有多年的网站设计经验的网站建设公司。
array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会。
1、输入为列表时
a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c)
从中我们可以看出np.array与np.asarray功能是一样的,都是将输入转为矩阵格式。当输入是列表的时候,更改列表的值并不会影响转化为矩阵的值。
2、输入为数组时
a=np.random.random((3,3)) print(a.dtype) b=np.array(a,dtype='float64') c=np.asarray(a,dtype='float64') a[2]=2 print(a) print(b) print(c)
从上述结果我们可以看出np.array与np.asarray的区别,其在于输入为数组时,np.array是将输入copy过去而np.asarray是将输入cut过去,所以随着输入的改变np.array的输出不变,而np.asarray的输出在变化,并且当我们使用np.asarray改变其类型的时候(输入是float64,改为float32),这样当输入改变的时候,np.asarray的输出也不会改变。
3、array类型转为list类型
a=np.random.random((3,3)) print(a.dtype) b=a.tolist() a[1]=2 print(a) print(b)
从上述我们可以看到.tolist是将数组转为list的格式,等同于np.array的反向,那什么情况下需要将np.ndarray转为list的格式呢?当需要序列化的时候(serialization),由于np.ndarray是不可序列化的。
以上是“numpy中np.array()与np.asarray的区别有哪些”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
网站题目:numpy中np.array()与np.asarray的区别有哪些
URL链接:http://ybzwz.com/article/igihds.html