flink伪分布式搭建及其本地idea测flink连接
下载安装flink:
上传压缩包:flink-1.7.2-bin-scala_2.12.tgz
解压:tar -zxvf /flink-1.7.2-bin-scala_2.12.tgz -C ../hone
复制解压文件到子节点:
scp -r /home/flink-1.7.2/ root@slave1:/home/
scp -r /home/flink-1.7.2/ root@slave2:/home/
修改配置文件:选择一个master节点,配置conf/flink-conf.yaml
vi conf/flink-conf.yaml
设置jobmanager.rpc.address 配置项为该节点的IP 或者主机名
jobmanager.rpc.address: 10.108.4.202
然后添加子节点配置:
在所有的节点中:flink目录下:vi conf/slaves
添加所有子节点ip然后保存
启动本地的flink集群:
cd 到flink目录下
./bin/start-cluster.sh
查看webui:ip:8081
启动监听:nc -lk 9000
当报nc命令不存在时(yum install nc)
然后执行测试jar:
停止flink集群:bin/stop-cluster.sh
以集群方式提交任务:在flink目录下
./bin/flink run -m yarn-cluster -c com.demo.florian.WordCount $DEMO_DIR/target/flink-demo-1.0-SNAPSHOT.jar --port 9000
新建maven程序
pom.xml依赖如下:
然后新建一个TestSocketWindowWordCount类具体代码如下
然后启动flink集群->新建一个监听:nc -lk 6666
然后启动TestSocketWindowWordCount类
在linux监听页面输入代码
观察在idea控制台就有统计的输出
-------pom.xml开始-----------
-------pom.xml结束-----------
-------TestSocketWindowWordCount开始------------------
package com.gyb;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
创新互联公司服务项目包括石柱土家族网站建设、石柱土家族网站制作、石柱土家族网页制作以及石柱土家族网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,石柱土家族网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到石柱土家族省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
import javax.xml.soap.Text;
public class TestSocketWindowWordCount {
public static void main(String args[]) {
String hostname = "192.168.198.130";
int port = 6666;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream text = env.socketTextStream(hostname, port, "\n");//获取执行环境
SingleOutputStreamOperator windowCounts = text
.flatMap(new FlatMapFunction
br/>@Override
out) {
for (String word : value.split("\s")) {
out.collect(new SocketWindowWordCount.WordWithCount(word, 1L));
}
}
})
.keyBy("word")
.timeWindow(Time.seconds(5), Time.seconds(5))
.reduce(new ReduceFunction
br/>@Override
return new SocketWindowWordCount.WordWithCount(a.word, a.count + b.count);
}
});
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1);
//env.execute("Socket Window WordCount");
try {
env.execute("Socket Window WordCount");
} catch (Exception e) {
e.printStackTrace();
}
}
public static class WordWithCount {
public String word;
public long count;
public WordWithCount() {}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return word + " : " + count;
}
}
}
-------TestSocketWindowWordCount结束------------------
本文标题:flink伪分布式搭建及其本地idea测flink连接
标题链接:http://ybzwz.com/article/iesgdh.html