Python做数据分析的流程是什么
这篇文章主要介绍“Python做数据分析的流程是什么”,在日常操作中,相信很多人在Python做数据分析的流程是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python做数据分析的流程是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联专注于中大型企业的网站建设、成都网站制作和网站改版、网站营销服务,追求商业策划与数据分析、创意艺术与技术开发的融合,累计客户1000+,服务满意度达97%。帮助广大客户顺利对接上互联网浪潮,准确优选出符合自己需要的互联网运用,我们将一直专注品牌网站制作和互联网程序开发,在前进的路上,与客户一起成长!
为什么选择Python进行数据分析?
Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅读起来像是在读一篇外语文章。Python这种特性称为“伪代码”,它可以使你只关心完成什么样的工作任务,而不是纠结于Python的语法。
另外,Python是开源的,它拥有非常多优秀的库,可以用于数据分析及其他领域。更重要的是,Python与开源大数据平台Hadoop具有很好的兼容性。因此,学习Python对于有志于向大数据分析岗位发展的数据分析师来说,是一件非常节省学习成本的事。
Python的众多优点让它成为受欢迎的程序设计语言之一,国内外许多公司也已经在使用Python,例YouTube,Google,阿里云等等。
编程基础
要学习如何用Python进行数据分析, 笔者建议第一步是要了解一些Python的编程基础,知道Python的数据结构,什么是向量、列表、数组、字典等等;了解Python的各种函数及模块。下图整理了这一阶段要掌握的知识点:
1. 数据获取
一般有数据分析师岗位需求的公司都会有自己的数据库,数据分析师可以通过SQL查询语句来获取数据库中想要数据。Python已经具有连接sql server、MySQL、orcale等主流数据库的接口包,比如pymssql、pymysql、cx_Oracle等。
而获取外部数据主要有两种获取方式,一种是获取国内一些网站上公开的数据资料;一种是通过编写爬虫代码自动爬取数据。如果希望使用Python爬虫来获取数据,我们可以使用以下Python工具:
Requests-主要用于爬取数据时发出请求操作。
BeautifulSoup-用于爬取数据时读取XML和HTML类型的数据,解析为对象进而处理。
Scapy-一个处理交互式数据的包,可以解码大部分网络协议的数据包
2. 数据存储
对于数据量不大的项目,可以使用excel来进行存储和处理,但对于数据量过万的项目,使用数据库来存储与管理会更高效便捷。
3. 数据预处理
数据预处理也称数据清洗。大多数情况下,我们拿到手的数据是格式不一致,存在异常值、缺失值等问题的,而不同项目数据预处理步骤的方法也不一样。笔者认为数据分析有80%的工作都在处理数据。如果选择Python作为数据清洗的工具的话,我们可以使用Numpy和Pandas这两个工具库:
Numpy - 用于Python中的科学计算。它非常适用于与线性代数,傅里叶变换和随机数相关的运算。它可以很好地处理多维数据,并兼容各种数据库。
Pandas –Pandas是基于Numpy扩展而来的,可以提供一系列函数来处理数据结构和运算,如时间序列等。
4. 建模与分析
这一阶段首先要清楚数据的结构,结合项目需求来选取模型。
常见的数据挖掘模型有:
从上图我们也可以得知,在整个数据分析流程,无论是数据提取、数据预处理、数据建模和分析,还是数据可视化,Python目前已经可以很好地支持我们的数据分析工作
到此,关于“Python做数据分析的流程是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
网站标题:Python做数据分析的流程是什么
浏览路径:http://ybzwz.com/article/ieoish.html