PostgreSQL中mdread函数有什么作用
本篇内容主要讲解“PostgreSQL中mdread函数有什么作用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“PostgreSQL中mdread函数有什么作用”吧!
创新互联主要从事网站设计、成都网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务顺庆,10年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220
PostgreSQL存储管理的mdread函数是magnetic disk存储管理中负责读取的函数.
一、数据结构
smgrsw
f_smgr函数指针结构体定义了独立的存储管理模块和smgr.c之间的API函数.
md是magnetic disk的缩写.
除了md,先前PG还支持Sony WORM optical disk jukebox and persistent main memory这两种存储方式,
但在后面只剩下magnetic disk,其余的已被废弃不再支持.
“magnetic disk”本身的名称也存在误导,实际上md可以支持操作系统提供标准文件系统的任何类型的设备.
/* * This struct of function pointers defines the API between smgr.c and * any individual storage manager module. Note that smgr subfunctions are * generally expected to report problems via elog(ERROR). An exception is * that smgr_unlink should use elog(WARNING), rather than erroring out, * because we normally unlink relations during post-commit/abort cleanup, * and so it's too late to raise an error. Also, various conditions that * would normally be errors should be allowed during bootstrap and/or WAL * recovery --- see comments in md.c for details. * 函数指针结构体定义了独立的存储管理模块和smgr.c之间的API函数. * 注意smgr子函数通常会通过elog(ERROR)报告错误. * 其中一个例外是smgr_unlink应该使用elog(WARNING),而不是把错误抛出, * 因为通过来说在事务提交/回滚清理期间才会解链接(unlinke)关系, * 因此这时候抛出错误就显得太晚了. * 同时,在bootstrap和/或WAL恢复期间,各种可能会出现错误的情况也应被允许 --- 详细可查看md.c中的注释. */ typedef struct f_smgr { void (*smgr_init) (void); /* may be NULL */ void (*smgr_shutdown) (void); /* may be NULL */ void (*smgr_close) (SMgrRelation reln, ForkNumber forknum); void (*smgr_create) (SMgrRelation reln, ForkNumber forknum, bool isRedo); bool (*smgr_exists) (SMgrRelation reln, ForkNumber forknum); void (*smgr_unlink) (RelFileNodeBackend rnode, ForkNumber forknum, bool isRedo); void (*smgr_extend) (SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, char *buffer, bool skipFsync); void (*smgr_prefetch) (SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum); void (*smgr_read) (SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, char *buffer); void (*smgr_write) (SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, char *buffer, bool skipFsync); void (*smgr_writeback) (SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, BlockNumber nblocks); BlockNumber (*smgr_nblocks) (SMgrRelation reln, ForkNumber forknum); void (*smgr_truncate) (SMgrRelation reln, ForkNumber forknum, BlockNumber nblocks); void (*smgr_immedsync) (SMgrRelation reln, ForkNumber forknum); void (*smgr_pre_ckpt) (void); /* may be NULL */ void (*smgr_sync) (void); /* may be NULL */ void (*smgr_post_ckpt) (void); /* may be NULL */ } f_smgr; /* md是magnetic disk的缩写. 除了md,先前PG还支持Sony WORM optical disk jukebox and persistent main memory这两种存储方式, 但在后面只剩下magnetic disk,其余的已被废弃不再支持. "magnetic disk"本身的名称也存在误导,实际上md可以支持操作系统提供标准文件系统的任何类型的设备. */ static const f_smgr smgrsw[] = { /* magnetic disk */ { .smgr_init = mdinit, .smgr_shutdown = NULL, .smgr_close = mdclose, .smgr_create = mdcreate, .smgr_exists = mdexists, .smgr_unlink = mdunlink, .smgr_extend = mdextend, .smgr_prefetch = mdprefetch, .smgr_read = mdread, .smgr_write = mdwrite, .smgr_writeback = mdwriteback, .smgr_nblocks = mdnblocks, .smgr_truncate = mdtruncate, .smgr_immedsync = mdimmedsync, .smgr_pre_ckpt = mdpreckpt, .smgr_sync = mdsync, .smgr_post_ckpt = mdpostckpt } };
MdfdVec
magnetic disk存储管理在自己的描述符池中跟踪打开的文件描述符.
之所以这样做是因为便于支持超过os文件大小上限(通常是2GB)的关系.
为了达到这个目的,我们拆分关系为多个比OS文件大小上限要小的”segment”文件.
段大小通过pg_config.h中定义的RELSEG_SIZE配置参数设置.
/* * The magnetic disk storage manager keeps track of open file * descriptors in its own descriptor pool. This is done to make it * easier to support relations that are larger than the operating * system's file size limit (often 2GBytes). In order to do that, * we break relations up into "segment" files that are each shorter than * the OS file size limit. The segment size is set by the RELSEG_SIZE * configuration constant in pg_config.h. * magnetic disk存储管理在自己的描述符池中跟踪打开的文件描述符. * 之所以这样做是因为便于支持超过os文件大小上限(通常是2GB)的关系. * 为了达到这个目的,我们拆分关系为多个比OS文件大小上限要小的"segment"文件. * 段大小通过pg_config.h中定义的RELSEG_SIZE配置参数设置. * * On disk, a relation must consist of consecutively numbered segment * files in the pattern * -- Zero or more full segments of exactly RELSEG_SIZE blocks each * -- Exactly one partial segment of size 0 <= size < RELSEG_SIZE blocks * -- Optionally, any number of inactive segments of size 0 blocks. * The full and partial segments are collectively the "active" segments. * Inactive segments are those that once contained data but are currently * not needed because of an mdtruncate() operation. The reason for leaving * them present at size zero, rather than unlinking them, is that other * backends and/or the checkpointer might be holding open file references to * such segments. If the relation expands again after mdtruncate(), such * that a deactivated segment becomes active again, it is important that * such file references still be valid --- else data might get written * out to an unlinked old copy of a segment file that will eventually * disappear. * 在磁盘上,关系必须由按照某种模式连续编号的segment files组成. * -- 每个RELSEG_SIZE块的另段或多个完整段 * -- 大小满足0 <= size < RELSEG_SIZE blocks的一个部分段 * -- 可选的,大小为0 blocks的N个非活动段 * 完整和部分段统称为活动段.非活动段指的是哪些因为mdtruncate()操作而出现的包含数据但目前不需要的. * 保留这些大小为0的非活动段而不是unlinking的原因是其他进程和/或checkpointer进程可能 * 持有这些段的文件依赖. * 如果关系在mdtruncate()之后再次扩展了,这样一个无效的会重新变为活动段, * 因此文件依赖仍然保持有效是很重要的 * --- 否则数据可能写出到未经链接的旧segment file拷贝上,会时不时的出现数据丢失. * * File descriptors are stored in the per-fork md_seg_fds arrays inside * SMgrRelation. The length of these arrays is stored in md_num_open_segs. * Note that a fork's md_num_open_segs having a specific value does not * necessarily mean the relation doesn't have additional segments; we may * just not have opened the next segment yet. (We could not have "all * segments are in the array" as an invariant anyway, since another backend * could extend the relation while we aren't looking.) We do not have * entries for inactive segments, however; as soon as we find a partial * segment, we assume that any subsequent segments are inactive. * 文件描述符在SMgrRelation中的per-fork md_seg_fds数组存储. * 这些数组的长度存储在md_num_open_segs中. * 注意一个fork的md_num_open_segs有一个特定值并不必要意味着关系不能有额外的段, * 我们只是还没有打开下一个段而已. * (但不管怎样,我们不可能把"所有段都放在数组中"作为一个不变式看待, * 因为其他后台进程在尚未检索时已经扩展了关系) * 但是,我们不需要持有非活动段的条目,只要我们一旦发现部分段,那么就可以假定接下来的段是非活动的. * * The entire MdfdVec array is palloc'd in the MdCxt memory context. * 整个MdfdVec数组通过palloc在MdCxt内存上下文中分配. */ typedef struct _MdfdVec { //文件描述符池中该文件的编号 File mdfd_vfd; /* fd number in fd.c's pool */ //段号,从0起算 BlockNumber mdfd_segno; /* segment number, from 0 */ } MdfdVec;
二、源码解读
mdread() — 从relation中读取相应的block.
源码较为简单,主要是调用FileRead函数执行实际的读取操作.
/* * mdread() -- Read the specified block from a relation. * mdread() -- 从relation中读取相应的block */ void mdread(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, char *buffer) { off_t seekpos;//seek的位置 int nbytes;//bytes MdfdVec *v;//md文件描述符向量数组 TRACE_POSTGRESQL_SMGR_MD_READ_START(forknum, blocknum, reln->smgr_rnode.node.spcNode, reln->smgr_rnode.node.dbNode, reln->smgr_rnode.node.relNode, reln->smgr_rnode.backend); //获取向量数组 v = _mdfd_getseg(reln, forknum, blocknum, false, EXTENSION_FAIL | EXTENSION_CREATE_RECOVERY); //获取block偏移 seekpos = (off_t) BLCKSZ * (blocknum % ((BlockNumber) RELSEG_SIZE)); //验证 Assert(seekpos < (off_t) BLCKSZ * RELSEG_SIZE); //读取文件,读入buffer中,返回读取的字节数 nbytes = FileRead(v->mdfd_vfd, buffer, BLCKSZ, seekpos, WAIT_EVENT_DATA_FILE_READ); //跟踪 TRACE_POSTGRESQL_SMGR_MD_READ_DONE(forknum, blocknum, reln->smgr_rnode.node.spcNode, reln->smgr_rnode.node.dbNode, reln->smgr_rnode.node.relNode, reln->smgr_rnode.backend, nbytes, BLCKSZ); if (nbytes != BLCKSZ) { //读取的字节数不等于块大小,报错 if (nbytes < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read block %u in file \"%s\": %m", blocknum, FilePathName(v->mdfd_vfd)))); /* * Short read: we are at or past EOF, or we read a partial block at * EOF. Normally this is an error; upper levels should never try to * read a nonexistent block. However, if zero_damaged_pages is ON or * we are InRecovery, we should instead return zeroes without * complaining. This allows, for example, the case of trying to * update a block that was later truncated away. * Short read:处于EOF或者在EOF之后,或者在EOF处读取了一个部分块. * 通常来说,这是一个错误,高层代码不应尝试读取一个不存在的block. * 但是,如果zero_damaged_pages参数设置为ON或者处于InRecovery状态,那么应该返回0而不报错. * 比如,这可以允许尝试更新一个块但随后就给截断的情况. */ if (zero_damaged_pages || InRecovery) MemSet(buffer, 0, BLCKSZ); else ereport(ERROR, (errcode(ERRCODE_DATA_CORRUPTED), errmsg("could not read block %u in file \"%s\": read only %d of %d bytes", blocknum, FilePathName(v->mdfd_vfd), nbytes, BLCKSZ))); } }
三、跟踪分析
测试脚本
11:15:11 (xdb@[local]:5432)testdb=# insert into t1(id) select generate_series(100,500);
启动gdb,跟踪
查看调用栈
(gdb) b mdread Breakpoint 3 at 0x8b669b: file md.c, line 738. (gdb) c Continuing. Breakpoint 3, mdread (reln=0x2d09be0, forknum=MAIN_FORKNUM, blocknum=50, buffer=0x7f3823369c00 "") at md.c:738 738 TRACE_POSTGRESQL_SMGR_MD_READ_START(forknum, blocknum, (gdb) bt #0 mdread (reln=0x2d09be0, forknum=MAIN_FORKNUM, blocknum=50, buffer=0x7f3823369c00 "") at md.c:738 #1 0x00000000008b92d5 in smgrread (reln=0x2d09be0, forknum=MAIN_FORKNUM, blocknum=50, buffer=0x7f3823369c00 "") at smgr.c:628 #2 0x00000000008793f9 in ReadBuffer_common (smgr=0x2d09be0, relpersistence=112 'p', forkNum=MAIN_FORKNUM, blockNum=50, mode=RBM_NORMAL, strategy=0x0, hit=0x7ffd5fb2948b) at bufmgr.c:890 #3 0x0000000000878cd4 in ReadBufferExtended (reln=0x7f3836e1e788, forkNum=MAIN_FORKNUM, blockNum=50, mode=RBM_NORMAL, strategy=0x0) at bufmgr.c:664 #4 0x0000000000878bb1 in ReadBuffer (reln=0x7f3836e1e788, blockNum=50) at bufmgr.c:596 #5 0x00000000004eeb96 in ReadBufferBI (relation=0x7f3836e1e788, targetBlock=50, bistate=0x0) at hio.c:87 #6 0x00000000004ef387 in RelationGetBufferForTuple (relation=0x7f3836e1e788, len=32, otherBuffer=0, options=0, bistate=0x0, vmbuffer=0x7ffd5fb295ec, vmbuffer_other=0x0) at hio.c:415 #7 0x00000000004df1f8 in heap_insert (relation=0x7f3836e1e788, tup=0x2ca6770, cid=0, options=0, bistate=0x0) at heapam.c:2468 #8 0x0000000000709dda in ExecInsert (mtstate=0x2ca4c40, slot=0x2ca3418, planSlot=0x2ca3418, estate=0x2ca48d8, canSetTag=true) at nodeModifyTable.c:529 #9 0x000000000070c475 in ExecModifyTable (pstate=0x2ca4c40) at nodeModifyTable.c:2159 #10 0x00000000006e05cb in ExecProcNodeFirst (node=0x2ca4c40) at execProcnode.c:445 #11 0x00000000006d552e in ExecProcNode (node=0x2ca4c40) at ../../../src/include/executor/executor.h:247 #12 0x00000000006d7d66 in ExecutePlan (estate=0x2ca48d8, planstate=0x2ca4c40, use_parallel_mode=false, operation=CMD_INSERT, sendTuples=false, numberTuples=0, direction=ForwardScanDirection, dest=0x2d41a30, execute_once=true) at execMain.c:1723 #13 0x00000000006d5af8 in standard_ExecutorRun (queryDesc=0x2ca24b8, direction=ForwardScanDirection, count=0, execute_once=true) at execMain.c:364 #14 0x00000000006d5920 in ExecutorRun (queryDesc=0x2ca24b8, direction=ForwardScanDirection, count=0, execute_once=true) at execMain.c:307 #15 0x00000000008c1092 in ProcessQuery (plan=0x2d418b8, sourceText=0x2c7eec8 "insert into t1(id) select generate_series(100,500);", params=0x0, queryEnv=0x0, dest=0x2d41a30, ---Typeto continue, or q to quit--- completionTag=0x7ffd5fb29b80 "") at pquery.c:161 #16 0x00000000008c29a1 in PortalRunMulti (portal=0x2ce4488, isTopLevel=true, setHoldSnapshot=false, dest=0x2d41a30, altdest=0x2d41a30, completionTag=0x7ffd5fb29b80 "") at pquery.c:1286 #17 0x00000000008c1f7a in PortalRun (portal=0x2ce4488, count=9223372036854775807, isTopLevel=true, run_once=true, dest=0x2d41a30, altdest=0x2d41a30, completionTag=0x7ffd5fb29b80 "") at pquery.c:799 #18 0x00000000008bbf16 in exec_simple_query (query_string=0x2c7eec8 "insert into t1(id) select generate_series(100,500);") at postgres.c:1145 #19 0x00000000008c01a1 in PostgresMain (argc=1, argv=0x2ca8af8, dbname=0x2ca8960 "testdb", username=0x2c7bba8 "xdb") at postgres.c:4182 #20 0x000000000081e07c in BackendRun (port=0x2ca0940) at postmaster.c:4361 #21 0x000000000081d7ef in BackendStartup (port=0x2ca0940) at postmaster.c:4033 #22 0x0000000000819be9 in ServerLoop () at postmaster.c:1706 #23 0x000000000081949f in PostmasterMain (argc=1, argv=0x2c79b60) at postmaster.c:1379 #24 0x0000000000742941 in main (argc=1, argv=0x2c79b60) at main.c:228 (gdb)
获取读取的偏移
(gdb) n 744 v = _mdfd_getseg(reln, forknum, blocknum, false, (gdb) 747 seekpos = (off_t) BLCKSZ * (blocknum % ((BlockNumber) RELSEG_SIZE)); (gdb) p *v $1 = {mdfd_vfd = 26, mdfd_segno = 0} (gdb) p BLCKSZ $2 = 8192 (gdb) p blocknum $3 = 50 (gdb) p RELSEG_SIZE $4 = 131072 (gdb) n 749 Assert(seekpos < (off_t) BLCKSZ * RELSEG_SIZE); (gdb) p seekpos $5 = 409600 (gdb)
执行读取操作
(gdb) n 751 if (FileSeek(v->mdfd_vfd, seekpos, SEEK_SET) != seekpos) (gdb) 757 nbytes = FileRead(v->mdfd_vfd, buffer, BLCKSZ, WAIT_EVENT_DATA_FILE_READ); (gdb) 759 TRACE_POSTGRESQL_SMGR_MD_READ_DONE(forknum, blocknum, (gdb) p nbytes $6 = 8192 (gdb) p *buffer $7 = 1 '\001' (gdb) n 767 if (nbytes != BLCKSZ) (gdb) 792 } (gdb) smgrread (reln=0x2d09be0, forknum=MAIN_FORKNUM, blocknum=50, buffer=0x7f3823369c00 "\001") at smgr.c:629 629 } (gdb)
到此,相信大家对“PostgreSQL中mdread函数有什么作用”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
本文名称:PostgreSQL中mdread函数有什么作用
转载源于:http://ybzwz.com/article/iegssg.html