go语言地图服务器 google地图
使用Go 语言开发大型 MMORPG 游戏服务器怎么样
从2013年起,经朋友推荐开始用Golang编写游戏登陆服务器, 配合C++做第三方平台验证. 到编写独立工具导表工具GitHub - davyxu/tabtoy: 跨平台的高性能便捷电子表格导出器. 以及网络库GitHub - davyxu/cellnet: 简单,方便,高效的Go语言的游戏服务器底层. 最终使用这些工具及库编写整个游戏服务器框架, 我的感受是很不错的
创新互联公司IDC提供业务:成都移动机房托管,成都服务器租用,成都移动机房托管,重庆服务器租用等四川省内主机托管与主机租用业务;数据中心含:双线机房,BGP机房,电信机房,移动机房,联通机房。
细节看来, 有如下的几个点:
语言, 库
Golang语言特性和C很像, 简单, 一张A4纸就能写完所有特性. 你想想看, C++到了领悟阶段, 也只用那几个简单特性, 剩下的都是一大堆解决各种内存问题的技巧. 而Golang一开始就简单, 何必浪费生命去研究那一大堆的奇技淫巧呢?
Golang的坑只有2个:1. interface{}和nil配合使用, 2. for循环时, 将循环变量引入闭包(Golang, Lua, C#闭包变量捕获差异) 完全不影响正常使用, 复合语言概念, 只是看官方后面怎么有效的避免
用Golang就忘记继承那套东西, 用组合+接口
用Golang服务器如何保证解决游戏服务器存盘一致性问题? stop the world是肯定的, 但是Golang可以从语言层并发序列化玩家数据, 再通过后台存盘
channel是goroutine虽然是Golang的语言特性. 但是在编写服务器时, 其实只有底层用的比较多.
Golang的第三方库简直多如牛毛, 好的也很多
不要说模板了, C#的也不好用, 官方在纠结也不要加, 使用中, 没模板确实有点不方便. 用interface{}/反射做泛型对于Golang这种强类型语言来说,还是有点打脸
运行期
Golang和C++比性能的话, 这是C++的优势, Golang因为没虚拟机, 只有薄薄的一层调度层. 因此性能是非常高的, 用一点性能牺牲换开发效率, 妥妥的
1.6版后的GC优化的已经很好了, 如果你不是高性能,高并发Web应用, 非要找出一堆的优化技巧的话. 只用Golang写点游戏服务器, 那点GC损耗可以忽略不计
和其他现代语言一样, 崩溃捕捉是标配功能, 我用Golang的服务器线上跑, 基本没碰到过崩溃情况
热更新: 官方已经有plugin系统的提交, 跨平台的. 估计很快就可以告别手动cgo做so热更新
开发, 调试, 部署, 优化
LiteIDE是我首选的Golang的IDE, 虽然有童鞋说B格不高. 但这估计实在是找不到缺点说了, 别跟我说Visual Studio, 那是宇宙级的...
曾经听说有人不看好Golang, 我问为啥: 说这么新的语言, 不好招人,后面打听到他是个策划... 好吧
真实情况是这样的: Golang对于有点编程基础的新人来说, 1周左右可以开始贡献代码. 老司机2~3天.
开发效率还是不错的, 一般大的游戏功能, 2*2人一周3~4个整完. 这换C++时代, 大概也就1~2个还写不完. 对接服务器sdk的话, 大概1天接个10多个没问题
Golang自带性能调优工具, 从内存, CPU, 阻塞点等几个方面直接出图进行分析, 非常直观, 可以参考我博客几年前的分析: 使用Golang进行性能分析(Profiling)
Golang支持交叉编译, 跨平台部署, 什么概念? linux是吧? 不问你什么版本, 直接windows上编译输出一个elf, 甩到服务器上开跑.不超过1分钟时间..
为什么go语言适合开发网游服务器端
前段时间在golang-China读到这个贴:
个人觉得golang十分适合进行网游服务器端开发,写下这篇文章总结一下。
从网游的角度看:
要成功的运营一款网游,很大程度上依赖于玩家自发形成的社区。只有玩家自发形成一个稳定的生态系统,游戏才能持续下去,避免鬼城的出现。而这就需要多次大量导入用户,在同时在线用户量达到某个临界点的时候,才有可能完成。因此,多人同时在线十分有必要。
再来看网游的常见玩法,除了排行榜这类统计和数据汇总的功能外,基本没有需要大量CPU时间的应用。以前的项目里,即时战斗产生的各种伤害计算对CPU的消耗也不大。玩家要完成一次操作,需要通过客户端-服务器端-客户端这样一个来回,为了获得高响应速度,满足玩家体验,服务器端的处理也不能占用太多时间。所以,每次请求对应的CPU占用是比较小的。
网游的IO主要分两个方面,一个是网络IO,一个是磁盘IO。网络IO方面,可以分成美术资源的IO和游戏逻辑指令的IO,这里主要分析游戏逻辑的IO。游戏逻辑的IO跟CPU占用的情况相似,每次请求的字节数很小,但由于多人同时在线,因此并发数相当高。另外,地图信息的广播也会带来比较频繁的网络通信。磁盘IO方面,主要是游戏数据的保存。采用不同的数据库,会有比较大的区别。以前的项目里,就经历了从MySQL转向MongoDB这种内存数据库的过程,磁盘IO不再是瓶颈。总体来说,还是用内存做一级缓冲,避免大量小数据块读写的方案。
针对网游的这些特点,golang的语言特性十分适合开发游戏服务器端。
首先,go语言提供goroutine机制作为原生的并发机制。每个goroutine所需的内存很少,实际应用中可以启动大量的goroutine对并发连接进行响应。goroutine与gevent中的greenlet很相像,遇到IO阻塞的时候,调度器就会自动切换到另一个goroutine执行,保证CPU不会因为IO而发生等待。而goroutine与gevent相比,没有了python底层的GIL限制,就不需要利用多进程来榨取多核机器的性能了。通过设置最大线程数,可以控制go所启动的线程,每个线程执行一个goroutine,让CPU满负载运行。
同时,go语言为goroutine提供了独到的通信机制channel。channel发生读写的时候,也会挂起当前操作channel的goroutine,是一种同步阻塞通信。这样既达到了通信的目的,又实现同步,用CSP模型的观点看,并发模型就是通过一组进程和进程间的事件触发解决任务的。虽然说,主流的编程语言之间,只要是图灵完备的,他们就都能实现相同的功能。但go语言提供的这种协程间通信机制,十分优雅地揭示了协程通信的本质,避免了以往锁的显式使用带给程序员的心理负担,确是一大优势。进行网游开发的程序员,可以将游戏逻辑按照单线程阻塞式的写,不需要额外考虑线程调度的问题,以及线程间数据依赖的问题。因为,线程间的channel通信,已经表达了线程间的数据依赖关系了,而go的调度器会给予妥善的处理。
另外,go语言提供的gc机制,以及对指针的保护式使用,可以大大减轻程序员的开发压力,提高开发效率。
展望未来,我期待go语言社区能够提供更多的goroutine间的隔离机制。个人十分推崇erlang社区的脆崩哲学,推动应用发生预期外行为时,尽早崩溃,再fork出新进程处理新的请求。对于协程机制,需要由程序员保证执行的函数不会发生死循环,导致线程卡死。如果能够定制goroutine所执行函数的最大CPU执行时间,及所能使用的最大内存空间,对于提升系统的鲁棒性,大有裨益。
彻底理解Golang Map
本文目录如下,阅读本文后,将一网打尽下面Golang Map相关面试题
Go中的map是一个指针,占用8个字节,指向hmap结构体; 源码 src/runtime/map.go 中可以看到map的底层结构
每个map的底层结构是hmap,hmap包含若干个结构为bmap的bucket数组。每个bucket底层都采用链表结构。接下来,我们来详细看下map的结构
bmap 就是我们常说的“桶”,一个桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果是“一类”的,关于key的定位我们在map的查询和插入中详细说明。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有8个位置)。
bucket内存数据结构可视化如下:
注意到 key 和 value 是各自放在一起的,并不是 key/value/key/value/... 这样的形式。源码里说明这样的好处是在某些情况下可以省略掉 padding字段,节省内存空间。
当 map 的 key 和 value 都不是指针,并且 size 都小于 128 字节的情况下,会把 bmap 标记为不含指针,这样可以避免 gc 时扫描整个 hmap。但是,我们看 bmap 其实有一个 overflow 的字段,是指针类型的,破坏了 bmap 不含指针的设想,这时会把 overflow 移动到 extra 字段来。
map是个指针,底层指向hmap,所以是个引用类型
golang 有三个常用的高级类型 slice 、map、channel, 它们都是 引用类型 ,当引用类型作为函数参数时,可能会修改原内容数据。
golang 中没有引用传递,只有值和指针传递。所以 map 作为函数实参传递时本质上也是值传递,只不过因为 map 底层数据结构是通过指针指向实际的元素存储空间,在被调函数中修改 map,对调用者同样可见,所以 map 作为函数实参传递时表现出了引用传递的效果。
因此,传递 map 时,如果想修改map的内容而不是map本身,函数形参无需使用指针
map 底层数据结构是通过指针指向实际的元素 存储空间 ,这种情况下,对其中一个map的更改,会影响到其他map
map 在没有被修改的情况下,使用 range 多次遍历 map 时输出的 key 和 value 的顺序可能不同。这是 Go 语言的设计者们有意为之,在每次 range 时的顺序被随机化,旨在提示开发者们,Go 底层实现并不保证 map 遍历顺序稳定,请大家不要依赖 range 遍历结果顺序。
map 本身是无序的,且遍历时顺序还会被随机化,如果想顺序遍历 map,需要对 map key 先排序,再按照 key 的顺序遍历 map。
map默认是并发不安全的,原因如下:
Go 官方在经过了长时间的讨论后,认为 Go map 更应适配典型使用场景(不需要从多个 goroutine 中进行安全访问),而不是为了小部分情况(并发访问),导致大部分程序付出加锁代价(性能),决定了不支持。
场景: 2个协程同时读和写,以下程序会出现致命错误:fatal error: concurrent map writes
如果想实现map线程安全,有两种方式:
方式一:使用读写锁 map + sync.RWMutex
方式二:使用golang提供的 sync.Map
sync.map是用读写分离实现的,其思想是空间换时间。和map+RWLock的实现方式相比,它做了一些优化:可以无锁访问read map,而且会优先操作read map,倘若只操作read map就可以满足要求(增删改查遍历),那就不用去操作write map(它的读写都要加锁),所以在某些特定场景中它发生锁竞争的频率会远远小于map+RWLock的实现方式。
golang中map是一个kv对集合。底层使用hash table,用链表来解决冲突 ,出现冲突时,不是每一个key都申请一个结构通过链表串起来,而是以bmap为最小粒度挂载,一个bmap可以放8个kv。在哈希函数的选择上,会在程序启动时,检测 cpu 是否支持 aes,如果支持,则使用 aes hash,否则使用 memhash。
map有3钟初始化方式,一般通过make方式创建
map的创建通过生成汇编码可以知道,make创建map时调用的底层函数是 runtime.makemap 。如果你的map初始容量小于等于8会发现走的是 runtime.fastrand 是因为容量小于8时不需要生成多个桶,一个桶的容量就可以满足
makemap函数会通过 fastrand 创建一个随机的哈希种子,然后根据传入的 hint 计算出需要的最小需要的桶的数量,最后再使用 makeBucketArray 创建用于保存桶的数组,这个方法其实就是根据传入的 B 计算出的需要创建的桶数量在内存中分配一片连续的空间用于存储数据,在创建桶的过程中还会额外创建一些用于保存溢出数据的桶,数量是 2^(B-4) 个。初始化完成返回hmap指针。
找到一个 B,使得 map 的装载因子在正常范围内
Go 语言中读取 map 有两种语法:带 comma 和 不带 comma。当要查询的 key 不在 map 里,带 comma 的用法会返回一个 bool 型变量提示 key 是否在 map 中;而不带 comma 的语句则会返回一个 value 类型的零值。如果 value 是 int 型就会返回 0,如果 value 是 string 类型,就会返回空字符串。
map的查找通过生成汇编码可以知道,根据 key 的不同类型,编译器会将查找函数用更具体的函数替换,以优化效率:
函数首先会检查 map 的标志位 flags。如果 flags 的写标志位此时被置 1 了,说明有其他协程在执行“写”操作,进而导致程序 panic。这也说明了 map 对协程是不安全的。
key经过哈希函数计算后,得到的哈希值如下(主流64位机下共 64 个 bit 位):
m: 桶的个数
从buckets 通过 hash m 得到对应的bucket,如果bucket正在扩容,并且没有扩容完成,则从oldbuckets得到对应的bucket
计算hash所在桶编号:
用上一步哈希值最后的 5 个 bit 位,也就是 01010 ,值为 10,也就是 10 号桶(范围是0~31号桶)
计算hash所在的槽位:
用上一步哈希值哈希值的高8个bit 位,也就是 10010111 ,转化为十进制,也就是151,在 10 号 bucket 中寻找** tophash 值(HOB hash)为 151* 的 槽位**,即为key所在位置,找到了 2 号槽位,这样整个查找过程就结束了。
如果在 bucket 中没找到,并且 overflow 不为空,还要继续去 overflow bucket 中寻找,直到找到或是所有的 key 槽位都找遍了,包括所有的 overflow bucket。
通过上面找到了对应的槽位,这里我们再详细分析下key/value值是如何获取的:
bucket 里 key 的起始地址就是 unsafe.Pointer(b)+dataOffset。第 i 个 key 的地址就要在此基础上跨过 i 个 key 的大小;而我们又知道,value 的地址是在所有 key 之后,因此第 i 个 value 的地址还需要加上所有 key 的偏移。
通过汇编语言可以看到,向 map 中插入或者修改 key,最终调用的是 mapassign 函数。
实际上插入或修改 key 的语法是一样的,只不过前者操作的 key 在 map 中不存在,而后者操作的 key 存在 map 中。
mapassign 有一个系列的函数,根据 key 类型的不同,编译器会将其优化为相应的“快速函数”。
我们只用研究最一般的赋值函数 mapassign 。
map的赋值会附带着map的扩容和迁移,map的扩容只是将底层数组扩大了一倍,并没有进行数据的转移,数据的转移是在扩容后逐步进行的,在迁移的过程中每进行一次赋值(access或者delete)会至少做一次迁移工作。
1.判断map是否为nil
每一次进行赋值/删除操作时,只要oldbuckets != nil 则认为正在扩容,会做一次迁移工作,下面会详细说下迁移过程
根据上面查找过程,查找key所在位置,如果找到则更新,没找到则找空位插入即可
经过前面迭代寻找动作,若没有找到可插入的位置,意味着需要扩容进行插入,下面会详细说下扩容过程
通过汇编语言可以看到,向 map 中删除 key,最终调用的是 mapdelete 函数
删除的逻辑相对比较简单,大多函数在赋值操作中已经用到过,核心还是找到 key 的具体位置。寻找过程都是类似的,在 bucket 中挨个 cell 寻找。找到对应位置后,对 key 或者 value 进行“清零”操作,将 count 值减 1,将对应位置的 tophash 值置成 Empty
再来说触发 map 扩容的时机:在向 map 插入新 key 的时候,会进行条件检测,符合下面这 2 个条件,就会触发扩容:
1、装载因子超过阈值
源码里定义的阈值是 6.5 (loadFactorNum/loadFactorDen),是经过测试后取出的一个比较合理的因子
我们知道,每个 bucket 有 8 个空位,在没有溢出,且所有的桶都装满了的情况下,装载因子算出来的结果是 8。因此当装载因子超过 6.5 时,表明很多 bucket 都快要装满了,查找效率和插入效率都变低了。在这个时候进行扩容是有必要的。
对于条件 1,元素太多,而 bucket 数量太少,很简单:将 B 加 1,bucket 最大数量( 2^B )直接变成原来 bucket 数量的 2 倍。于是,就有新老 bucket 了。注意,这时候元素都在老 bucket 里,还没迁移到新的 bucket 来。新 bucket 只是最大数量变为原来最大数量的 2 倍( 2^B * 2 ) 。
2、overflow 的 bucket 数量过多
在装载因子比较小的情况下,这时候 map 的查找和插入效率也很低,而第 1 点识别不出来这种情况。表面现象就是计算装载因子的分子比较小,即 map 里元素总数少,但是 bucket 数量多(真实分配的 bucket 数量多,包括大量的 overflow bucket)
不难想像造成这种情况的原因:不停地插入、删除元素。先插入很多元素,导致创建了很多 bucket,但是装载因子达不到第 1 点的临界值,未触发扩容来缓解这种情况。之后,删除元素降低元素总数量,再插入很多元素,导致创建很多的 overflow bucket,但就是不会触发第 1 点的规定,你能拿我怎么办?overflow bucket 数量太多,导致 key 会很分散,查找插入效率低得吓人,因此出台第 2 点规定。这就像是一座空城,房子很多,但是住户很少,都分散了,找起人来很困难
对于条件 2,其实元素没那么多,但是 overflow bucket 数特别多,说明很多 bucket 都没装满。解决办法就是开辟一个新 bucket 空间,将老 bucket 中的元素移动到新 bucket,使得同一个 bucket 中的 key 排列地更紧密。这样,原来,在 overflow bucket 中的 key 可以移动到 bucket 中来。结果是节省空间,提高 bucket 利用率,map 的查找和插入效率自然就会提升。
由于 map 扩容需要将原有的 key/value 重新搬迁到新的内存地址,如果有大量的 key/value 需要搬迁,会非常影响性能。因此 Go map 的扩容采取了一种称为“渐进式”的方式,原有的 key 并不会一次性搬迁完毕,每次最多只会搬迁 2 个 bucket。
上面说的 hashGrow() 函数实际上并没有真正地“搬迁”,它只是分配好了新的 buckets,并将老的 buckets 挂到了 oldbuckets 字段上。真正搬迁 buckets 的动作在 growWork() 函数中,而调用 growWork() 函数的动作是在 mapassign 和 mapdelete 函数中。也就是插入或修改、删除 key 的时候,都会尝试进行搬迁 buckets 的工作。先检查 oldbuckets 是否搬迁完毕,具体来说就是检查 oldbuckets 是否为 nil。
如果未迁移完毕,赋值/删除的时候,扩容完毕后(预分配内存),不会马上就进行迁移。而是采取 增量扩容 的方式,当有访问到具体 bukcet 时,才会逐渐的进行迁移(将 oldbucket 迁移到 bucket)
nevacuate 标识的是当前的进度,如果都搬迁完,应该和2^B的长度是一样的
在evacuate 方法实现是把这个位置对应的bucket,以及其冲突链上的数据都转移到新的buckets上。
转移的判断直接通过tophash 就可以,判断tophash中第一个hash值即可
遍历的过程,就是按顺序遍历 bucket,同时按顺序遍历 bucket 中的 key。
map遍历是无序的,如果想实现有序遍历,可以先对key进行排序
为什么遍历 map 是无序的?
如果发生过迁移,key 的位置发生了重大的变化,有些 key 飞上高枝,有些 key 则原地不动。这样,遍历 map 的结果就不可能按原来的顺序了。
如果就一个写死的 map,不会向 map 进行插入删除的操作,按理说每次遍历这样的 map 都会返回一个固定顺序的 key/value 序列吧。但是 Go 杜绝了这种做法,因为这样会给新手程序员带来误解,以为这是一定会发生的事情,在某些情况下,可能会酿成大错。
Go 做得更绝,当我们在遍历 map 时,并不是固定地从 0 号 bucket 开始遍历,每次都是从一个**随机值序号的 bucket 开始遍历,并且是从这个 bucket 的一个 随机序号的 cell **开始遍历。这样,即使你是一个写死的 map,仅仅只是遍历它,也不太可能会返回一个固定序列的 key/value 对了。
go语言能做什么?
很多朋友可能知道Go语言的优势在哪,却不知道Go语言适合用于哪些地方。
1、 Go语言作为服务器编程语言,很适合处理日志、数据打包、虚拟机处理、文件系统、分布式系统、数据库代理等;网络编程方面。Go语言广泛应用于Web应用、API应用、下载应用等;除此之外,Go语言还可用于内存数据库和云平台领域,目前国外很多云平台都是采用Go开发。
2、 其实Go语言主要用作服务器端开发。其定位是用来开发"大型软件"的,适合于很多程序员一起开发大型软件,并且开发周期长,支持云计算的网络服务。Go语言能够让程序员快速开发,并且在软件不断的增长过程中,它能让程序员更容易地进行维护和修改。它融合了传统编译型语言的高效性和脚本语言的易用性和富于表达性。
3、 Go语言成功案例。Nsq:Nsq是由Go语言开发的高性能、高可用消息队列系统,性能非常高,每天能处理数十亿条的消息;
4、 Docker:基于lxc的一个虚拟打包工具,能够实现PAAS平台的组建。
5、 Packer:用来生成不同平台的镜像文件,例如VM、vbox、AWS等,作者是vagrant的作者
6、 Skynet:分布式调度框架。
7、 Doozer:分布式同步工具,类似ZooKeeper。
8、 Heka:mazila开源的日志处理系统。
9、 Cbfs:couchbase开源的分布式文件系统。
10、 Tsuru:开源的PAAS平台,和SAE实现的功能一模一样。
11、 Groupcache:memcahe作者写的用于Google下载系统的缓存系统。
12、 God:类似redis的缓存系统,但是支持分布式和扩展性。
13、 Gor:网络流量抓包和重放工具。
以上的就是关于go语言能做什么的内容介绍了。
分享文章:go语言地图服务器 google地图
文章分享:http://ybzwz.com/article/hpdcdc.html