python平滑滤波函数 python数据平滑处理方法

Python:这有可能是最详细的PIL库基本概念文章了

PIL有如下几个模块:Image模块、ImageChops模块、ImageCrackCode模块、ImageDraw模块、ImageEnhance模块、ImageFile模块、ImageFileIO模块、ImageFilter模块、ImageFont模块、ImageGrab模块、ImageOps模块、ImagePath模块、ImageSequence模块、ImageStat模块、ImageTk模块、ImageWin模块、PSDraw模块

创新互联公司专注于市北网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供市北营销型网站建设,市北网站制作、市北网页设计、市北网站官网定制、微信小程序定制开发服务,打造市北网络公司原创品牌,更为您提供市北网站排名全网营销落地服务。

啊啊啊啊怎么这么多模块啊~~~!!!!

别担心我为你一一讲解

Image模块提供了一个相同名称的类,即image类,用于表示PIL图像。

Image模块是PIL中最重要的模块 ,比如创建、打开、显示、保存图像等功能,合成、裁剪、滤波等功能,获取图像属性功能,如图像直方图、通道数等。

Image模块的使用如下:

ImageChops模块包含一些算术图形操作,这些操作可用于诸多目的,比如图像特效,图像组合,算法绘图等等,通道操作只用于8位图像。

ImageChops模块的使用如下:

由于图像im_dup是im的复制过来的,所以它们的差为0,图像im_diff显示时为黑图。

ImageCrackCode模块允许用户检测和测量图像的各种特性。 这个模块只存在于PIL Plus包中。

因为我目前安装的PIL中没有包含这个模块。所以就不详细介绍了

ImageDraw模块为image对象提供了基本的图形处理功能。 例如,它可以创建新图像,注释或润饰已存在图像,为web应用实时产生各种图形。

ImageDraw模块的使用如下:

在del draw前后显示出来的图像im是完全一样的,都是在原有图像上画了两条对角线。

原谅我的报错

ImageEnhance模块包括一些用于图像增强的类。它们分别为 Color类、Brightness类、Contrast类和Sharpness类。

ImageEnhance模块的使用如下:

图像im0的亮度为图像im的一半。

ImageFile模块为图像打开和保存功能提供了相关支持功能。另外,它提供了一个Parser类,这个类可以一块一块地对一张图像进行解码(例如,网络联接中接收一张图像)。这个类的接口与标准的sgmllib和xmllib模块的接口一样。

ImageFile模块的使用如下:

因为所打开图像大小大于1024个byte,所以报错:图像不完整。

所以大家想看的可以自行去找一个小一点的图看一下

ImageFileIO模块用于从一个socket或者其他流设备中读取一张图像。 不赞成使用这个模块。 在新的code中将使用ImageFile模块的Parser类来代替它。

ImageFilter模块包括各种滤波器的预定义集合,与Image类的filter方法一起使用。该模块包含这些图像增强的滤器:BLUR,CONTOUR,DETAIL,EDGE_ENHANCE,EDGE_ENHANCE_MORE,EMBOSS,FIND_EDGES,SMOOTH,SMOOTH_MORE和SHARPEN。

ImageFilter模块的使用如下:

ImageFont模块定义了一个同名的类,即ImageFont类。这个类的实例中存储着bitmap字体,需要与ImageDraw类的text方法一起使用。

PIL使用自己的字体文件格式存储bitmap字体。用户可以使用pilfont工具包将BDF和PCF字体描述器(Xwindow字体格式)转换为这种格式。

PIL Plus包中才会支持矢量字体。

ImageGrab模块用于将屏幕上的内容拷贝到一个PIL图像内存中。 当前的版本只在windows操作系统上可以工作。

ImageGrab模块的使用如下:

图像im显示出笔记本当前的窗口内容,就是类似于截图的工具

ImageOps模块包括一些“ready-made”图像处理操作。 它可以完成直方图均衡、裁剪、量化、镜像等操作 。大多数操作只工作在L和RGB图像上。

ImageOps模块的使用如下:

图像im_flip为图像im垂直方向的镜像。

ImagePath模块用于存储和操作二维向量数据。Path对象将被传递到ImageDraw模块的方法中。

ImagePath模块的使用如下:

ImageSequence模块包括一个wrapper类,它为图像序列中每一帧提供了迭代器。

ImageSequence模块的使用如下:

后面两次show()函数调用,分别显示第1张和第11张图像。

ImageStat模块计算一张图像或者一张图像的一个区域的全局统计值。

ImageStat模块的使用如下:

ImageTk模块用于创建和修改BitmapImage和PhotoImage对象中的Tkinter。

ImageTk模块的使用如下:

这个是我一直不太懂的有没有大佬能帮我解决一下在线等~急!

PSDraw模块为Postscript打印机提供基本的打印支持。用户可以通过这个模块打印字体,图形和图像。

PIL中所涉及的基本概念有如下几个: 通道(bands)、模式(mode)、尺寸(size)、坐标系统(coordinate system)、调色板(palette)、信息(info)和滤波器(filters)。

每张图片都是由一个或者多个数据通道构成。PIL允许在单张图片中合成相同维数和深度的多个通道。

以RGB图像为例,每张图片都是由三个数据通道构成,分别为R、G和B通道。而对于灰度图像,则只有一个通道。

对于一张图片的通道数量和名称,可以通过getbands()方法来获取。getbands()方法是Image模块的方法,它会返回一个字符串元组(tuple)。该元组将包括每一个通道的名称。

Python的元组与列表类似,不同之处在于元组的元素不能修改,元组使用小括号,列表使用方括号,元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可。

getbands()方法的使用如下:

图像的模式定义了图像的类型和像素的位宽。当前支持如下模式:

1:1位像素,表示黑和白,但是存储的时候每个像素存储为8bit。

L:8位像素,表示黑和白。

P:8位像素,使用调色板映射到其他模式。

I:32位整型像素。

F:32位浮点型像素。

RGB:3x8位像素,为真彩色。

RGBA:4x8位像素,有透明通道的真彩色。

CMYK:4x8位像素,颜色分离。

YCbCr:3x8位像素,彩色视频格式。

PIL也支持一些特殊的模式,包括RGBX(有padding的真彩色)和RGBa(有自左乘alpha的真彩色)。

可以通过mode属性读取图像的模式。其返回值是包括上述模式的字符串。

mode 属性 的使用如下:

通过size属性可以获取图片的尺寸。这是一个二元组,包含水平和垂直方向上的像素数。

mode属性的使用如下:

PIL使用笛卡尔像素坐标系统,坐标(0,0)位于左上角。注意:坐标值表示像素的角;位于坐标(0,0)处的像素的中心实际上位于(0.5,0.5)。

坐标经常用于二元组(x,y)。长方形则表示为四元组,前面是左上角坐标。例如:一个覆盖800x600的像素图像的长方形表示为(0,0,800,600)。

调色板模式 ("P")使用一个颜色调色板为每个像素定义具体的颜色值

使用info属性可以为一张图片添加一些辅助信息。这个是字典对象。加载和保存图像文件时,多少信息需要处理取决于文件格式。

info属性的使用如下:

对于将多个输入像素映射为一个输出像素的几何操作,PIL提供了4个不同的采样滤波器:

NEAREST:最近滤波。 从输入图像中选取最近的像素作为输出像素。它忽略了所有其他的像素。

BILINEAR:双线性滤波。 在输入图像的2x2矩阵上进行线性插值。注意:PIL的当前版本,做下采样时该滤波器使用了固定输入模板。

BICUBIC:双立方滤波。 在输入图像的4x4矩阵上进行立方插值。注意:PIL的当前版本,做下采样时该滤波器使用了固定输入模板。

ANTIALIAS:平滑滤波。 这是PIL 1.1.3版本中新的滤波器。对所有可以影响输出像素的输入像素进行高质量的重采样滤波,以计算输出像素值。在当前的PIL版本中,这个滤波器只用于改变尺寸和缩略图方法。

注意:在当前的PIL版本中,ANTIALIAS滤波器是下采样 (例如,将一个大的图像转换为小图) 时唯一正确的滤波器。 BILIEAR和BICUBIC滤波器使用固定的输入模板 ,用于固定比例的几何变换和上采样是最好的。Image模块中的方法resize()和thumbnail()用到了滤波器。

resize()方法的定义为:resize(size, filter=None)= image

resize()方法的使用如下:

对参数filter不赋值的话,resize()方法默认使用NEAREST滤波器。如果要使用其他滤波器可以通过下面的方法来实现:

thumbnail ()方法的定义为:im.thumbnail(size, filter=None)

thumbnail ()方法的使用如下:

这里需要说明的是,方法thumbnail()需要保持宽高比,对于size=(200,200)的输入参数,其最终的缩略图尺寸为(182, 200)。

对参数filter不赋值的话,方法thumbnail()默认使用NEAREST滤波器。如果要使用其他滤波器可以通过下面的方法来实现:

OpenCV Python 系列教程4 - OpenCV 图像处理(上)

学习目标:

OpenCV 中有 150 多种色彩空间转化的方法,这里只讨论两种:

HSV的色相范围为[0,179],饱和度范围为[0,255],值范围为[0,255]。不同的软件使用不同的规模。如果要比较 OpenCV 值和它们,你需要标准化这些范围。

HSV 和 HLV 解释

运行结果:该段程序的作用是检测蓝色目标,同理可以检测其他颜色的目标

结果中存在一定的噪音,之后的章节将会去掉它

这是物体跟踪中最简单的方法。一旦你学会了等高线的函数,你可以做很多事情,比如找到这个物体的质心,用它来跟踪这个物体,仅仅通过在相机前移动你的手来画图表,还有很多其他有趣的事情。

菜鸟教程 在线 HSV- BGR 转换

比如要找出绿色的 HSV 值,可以使用上面的程序,得到的值取一个上下界。如上面的取下界 [H-10, 100, 100],上界 [H+10, 255, 255]

或者使用其他工具如 GIMP

学习目标:

对图像进行阈值处理,算是一种最简单的图像分割方法,基于图像与背景之间的灰度差异,此项分割是基于像素级的分割

threshold(src, thresh, maxval, type[, dst]) - retval, dst

计算图像小区域的阈值。所以我们对同一幅图像的不同区域得到不同的阈值,这给我们在不同光照下的图像提供了更好的结果。

三个特殊的输入参数和一个输出参数

adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) - dst

opencv-threshold-python

OpenCV 图片集

本节原文

学习目标:

OpenCV 提供两种变换函数: cv2.warpAffine 和 cv2.warpPerspective

cv2.resize() 完成缩放

文档说明

运行结果

说明 : cv2.INTER_LINEAR 方法比 cv2.INTER_CUBIC 还慢,好像与官方文档说的不一致? 有待验证。

速度比较: INTER_CUBIC INTER_NEAREST INTER_LINEAR INTER_AREA INTER_LANCZOS4

改变图像的位置,创建一个 np.float32 类型的变换矩阵,

warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) - dst

运行结果:

旋转角度( )是通过一个变换矩阵变换的:

OpenCV 提供的是可调旋转中心的缩放旋转,这样你可以在任何你喜欢的位置旋转。修正后的变换矩阵为

这里

OpenCV 提供了 cv2.getRotationMatrix2D 控制

cv2.getRotationMatrix2D(center, angle, scale) → retval

运行结果

cv2.getAffineTransform(src, dst) → retval

函数关系:

\begin{bmatrix} x'_i \ y'_i \end{bmatrix}\begin{bmatrix} x'_i \ y'_i \end{bmatrix} =

其中

运行结果:图上的点便于观察,两图中的红点是相互对应的

透视变换需要一个 3x3 变换矩阵。转换之后直线仍然保持笔直,要找到这个变换矩阵,需要输入图像上的 4 个点和输出图像上的对应点。在这 4 个点中,有 3 个不应该共线。通过 cv2.getPerspectiveTransform 计算得到变换矩阵,得到的矩阵 cv2.warpPerspective 变换得到最终结果。

本节原文

平滑处理(smoothing)也称模糊处理(bluring),是一种简单且使用频率很高的图像处理方法。平滑处理的用途:常见是用来 减少图像上的噪点或失真 。在涉及到降低图像分辨率时,平滑处理是很好用的方法。

图像滤波:尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。

消除图像中的噪声成分叫做图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段,在高频段,有用的信息会被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。

滤波的目的:抽出对象的特征作为图像识别的特征模式;为适应图像处理的要求,消除图像数字化时混入的噪声。

滤波处理的要求:不能损坏图像的轮廓及边缘等重要信息;图像清晰视觉效果好。

平滑滤波是低频增强的空间滤波技术,目的:模糊和消除噪音。

空间域的平滑滤波一般采用简单平均法,即求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑效果越好,但是邻域过大,平滑也会使边缘信息的损失的越大,从而使输出图像变得模糊。因此需要选择合适的邻域。

滤波器:一个包含加权系数的窗口,利用滤波器平滑处理图像时,把这个窗口放在图像上,透过这个窗口来看我们得到的图像。

线性滤波器:用于剔除输入信号中不想要的频率或者从许多频率中选择一个想要的频率。

低通滤波器、高通滤波器、带通滤波器、带阻滤波器、全通滤波器、陷波滤波器

boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) - dst

均值滤波是方框滤波归一化后的特殊情况。归一化就是要把处理的量缩放到一个范围内如 (0,1),以便统一处理和直观量化。非归一化的方框滤波用于计算每个像素邻近内的积分特性,比如密集光流算法中用到的图像倒数的协方差矩阵。

运行结果:

均值滤波是典型的线性滤波算法,主要方法为邻域平均法,即用一片图像区域的各个像素的均值来代替原图像中的各个像素值。一般需要在图像上对目标像素给出一个模板(内核),该模板包括了其周围的临近像素(比如以目标像素为中心的周围8(3x3-1)个像素,构成一个滤波模板,即 去掉目标像素本身 )。再用模板中的全体像素的平均值来代替原来像素值。即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y) ,其中m为该模板中包含当前像素在内的像素总个数。

均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。

cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) → dst

结果:

高斯滤波:线性滤波,可以消除高斯噪声,广泛应用于图像处理的减噪过程。高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过 加权平均 后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。

高斯滤波有用但是效率不高。

高斯模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现)。从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。

高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。 高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。

一维零均值高斯函数为: 高斯分布参数 决定了高斯函数的宽度。

高斯噪声的产生

GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) - dst

线性滤波容易构造,并且易于从频率响应的角度来进行分析。

许多情况,使用近邻像素的非线性滤波会得到更好的结果。比如在噪声是散粒噪声而不是高斯噪声,即图像偶尔会出现很大值的时候,用高斯滤波器进行图像模糊时,噪声像素不会被消除,而是转化为更为柔和但仍然可见的散粒。

中值滤波(Median filter)是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值,该方法在去除脉冲噪声、椒盐噪声『椒盐噪声又称脉冲噪声,它随机改变一些像素值,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起。』的同时又能保留图像边缘细节,

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点,对于 斑点噪声(speckle noise)和椒盐噪声(salt-and-pepper noise) 来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。中值滤波器在处理连续图像窗函数时与线性滤波器的工作方式类似,但滤波过程却不再是加权运算。

中值滤波在一定的条件下可以克服常见线性滤波器如最小均方滤波、方框滤波器、均值滤波等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息, 保存边缘的特性使它在不希望出现边缘模糊的场合也很有用,是非常经典的平滑噪声处理方法。

与均值滤波比较:

说明:中值滤波在一定条件下,可以克服线性滤波器(如均值滤波等)所带来的图像细节模糊,而且对滤除脉冲干扰即图像扫描噪声最为有效。在实际运算过程中并不需要图像的统计特性,也给计算带来不少方便。 但是对一些细节多,特别是线、尖顶等细节多的图像不宜采用中值滤波。

双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合 图像的空间邻近度和像素值相似度 的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。

双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差 sigma-d ,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。 但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。

运行结果

学习目标:

形态变换是基于图像形状的一些简单操作。它通常在二进制图像上执行。

膨胀与腐蚀实现的功能

侵蚀的基本思想就像土壤侵蚀一样,它会侵蚀前景物体的边界(总是试图保持前景为白色)。那它是做什么的?内核在图像中滑动(如在2D卷积中)。只有当内核下的所有像素都是 1 时,原始图像中的像素( 1 或 0 )才会被视为 1 ,否则它将被侵蚀(变为零)

erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) - dst

与腐蚀的操作相反。如果内核下的至少一个像素为“1”,则像素元素为“1”。因此它增加了图像中的白色区域或前景对象的大小增加。通常,在去除噪音的情况下,侵蚀之后是扩张。因为,侵蚀会消除白噪声,但它也会缩小我们的物体。所以我们扩大它。由于噪音消失了,它们不会再回来,但我们的物体区域会增加。它也可用于连接对象的破碎部分

2021-02-08 Python OpenCV GaussianBlur()函数

borderType= None)函数

此函数利用高斯滤波器平滑一张图像。该函数将源图像与指定的高斯核进行卷积。

src:输入图像

ksize:(核的宽度,核的高度),输入高斯核的尺寸,核的宽高都必须是正奇数。否则,将会从参数sigma中计算得到。

dst:输出图像,尺寸与输入图像一致。

sigmaX:高斯核在X方向上的标准差。

sigmaY:高斯核在Y方向上的标准差。默认为None,如果sigmaY=0,则它将被设置为与sigmaX相等的值。如果这两者都为0,则它们的值会从ksize中计算得到。计算公式为:

borderType:像素外推法,默认为None(参考官方文档 BorderTypes

)

在图像处理中,高斯滤波主要有两种方式:

1.窗口滑动卷积

2.傅里叶变换

在此主要利用窗口滑动卷积。其中二维高斯函数公式为:

根据上述公式,生成一个3x3的高斯核,其中最重要的参数就是标准差 ,标准差 越大,核中心的值与周围的值差距越小,曲线越平滑。标准差 越小,核中心的值与周围的值差距越大,曲线越陡峭。

从图像的角度来说,高斯核的标准差 越大,平滑效果越不明显。高斯核的标准差 越小,平滑效果越明显。

可见,标准差 越大,图像平滑程度越大

参考博客1:关于GaussianBlur函数

参考博客2:关于高斯核运算


分享标题:python平滑滤波函数 python数据平滑处理方法
路径分享:http://ybzwz.com/article/hhhcid.html