python中度分布函数,python 分布函数

Python基础 numpy中的常见函数有哪些

有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。

创新互联服务项目包括浦北网站建设、浦北网站制作、浦北网页制作以及浦北网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,浦北网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到浦北省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。

数组常用函数

1.where()按条件返回数组的索引值

2.take(a,index)从数组a中按照索引index取值

3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个

4.a.fill()将数组的所有元素以指定的值填充

5.diff(a)返回数组a相邻元素的差值构成的数组

6.sign(a)返回数组a的每个元素的正负符号

7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果

8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改变数组维度

a.ravel(),a.flatten():将数组a展平成一维数组

a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组

a.transpose,a.T转置数组a

数组组合

1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合

2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合

3.row_stack((a,b))将数组a,b按行方向组合

4.column_stack((a,b))将数组a,b按列方向组合

数组分割

1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组

2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组

数组修剪和压缩

1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m

2.a.compress()返回根据给定条件筛选后的数组

数组属性

1.a.dtype数组a的数据类型

2.a.shape数组a的维度

3.a.ndim数组a的维数

4.a.size数组a所含元素的总个数

5.a.itemsize数组a的元素在内存中所占的字节数

6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型

数组计算

1.average(a,weights=v)对数组a以权重v进行加权平均

2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差

3.a.prod()数组a的所有元素的乘积

4.a.cumprod()数组a的元素的累积乘积

5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数

6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和

以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。

如何在Python中实现这五类强大的概率分布

Python – 伯乐在线

首页所有文章观点与动态基础知识系列教程实践项目工具与框架工具资源Python小组伯乐在线 Python - 伯乐在线 所有文章 实践项目 如何在Python中实现这五类强大的概率分布如何在Python中实现这五类强大的概率分布

2015/04/25 · 实践项目 · 概率分布

分享到: 12

本文由 伯乐在线 - feigao.me 翻译,Daetalus 校稿。未经许可,禁止转载!

英文出处:。欢迎加入翻译组。

R编程语言已经成为统计分析中的事实标准。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易。我要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable)。随机变量是对一次试验结果的量化。

举个例子,一个表示抛硬币结果的随机变量可以表示成Python

X = {1 如果正面朝上,

2 如果反面朝上}

12X = {1 如果正面朝上,

2 如果反面朝上}

随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion)。

我鼓励大家仔细研究一下scipy.stats模块。

概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。

离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。

连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。

若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。

二项分布(Binomial Distribution)

服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。

E(X) = np, Var(X) = np(1?p)

如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令。 E(X)表示分布的期望或平均值。

键入stats.binom?了解二项分布函数binom的更多信息。

二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?

假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k = np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。

您可以使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图。

泊松分布(Poisson Distribution)

一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。

E(X) = λ, Var(X) = λ

泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?

让我们考虑这个平均每天发生2起事故的例子。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。我用结果生成了以下图片。

你可以看到,事故次数的峰值在均值附近。平均来说,你可以预计事件发生的次数为λ。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的。

现在我来模拟1000个服从泊松分布的随机变量。

正态分布(Normal Distribution)

正态分布是一种连续分布,其函数可以在实线上的任何地方取值。正态分布由两个参数描述:分布的平均值μ和方差σ2 。

E(X) = μ, Var(X) = σ2

正态分布的取值可以从负无穷到正无穷。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数。

β分布(Beta Distribution)

β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画。

β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。

当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniform distribution)。尝试不同的α和β取值,看看分布的形状是如何变化的。

指数分布(Exponential Distribution)

指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等。

我将参数λ设置为0.5,并将x的取值范围设置为 $[0, 15]$ 。

接着,我在指数分布下模拟1000个随机变量。scale参数表示λ的倒数。函数np.std中,参数ddof等于标准偏差除以 $n-1$ 的值。

结语(Conclusion)

概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结。我建议你去看看哈佛大学数据科学课程的讲座,Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部。

使用Python构造经验累积分布函数(ECDF)

对于一个样本序列 ,经验累积分布函数 (Empirical Cumulative Distribution Function)可被定义为

其中 是一个指示函数,如果 ,指示函数取值为1,否则取值为0,因此 能反映在样本中小于 的元素数量占比。

根据格利文科定理(Glivenko–Cantelli Theorem),如果一个样本满足独立同分布(IID),那么其经验累积分布函数 会趋近于真实的累积分布函数 。

首先定义一个类,命名为ECDF:

我们采用均匀分布(Uniform)进行验证,导入 uniform 包,然后进行两轮抽样,第一轮抽取10次,第二轮抽取1000次,比较输出的结果。

输出结果为:

而我们知道,在真实的0到1均匀分布中, 时, ,从模拟结果可以看出,样本量越大,最终的经验累积分布函数值也越接近于真实的累积分布函数值,因此格利文科定理得以证明。


网站标题:python中度分布函数,python 分布函数
网页链接:http://ybzwz.com/article/heggss.html