医院nosql,医院等级划分标准

大数据时代:五大商业分析技术趋势

大数据时代:五大商业分析技术趋势

公司主营业务:网站设计制作、成都网站制作、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联公司推出东坡免费做网站回馈大家。

目前,趋势中心对如何应对分析挑战的关注力度并不亚于他们考虑在新商业视角中如何充分利用机遇的力度。例如,随着越来越多的公司开始不得不面对海量数据以及 考虑如何利用这些数据,管理与分析大型不同数据集的技术开始出现。提前分析成本与性能趋势意味着公司能够提出比以前更为复杂的问题,提供更为有用的信息以 帮助他们运营业务。

在采访中,首席信息官们总结出了5大影响他们进行分析的IT趋势。它们分别为:大数据的增长、快速处理技术、IT商品的成本下降、移动设备的普及和社交媒体的增长。

1.大数据

大数据指非常庞大的数据集,尤其是那些没有被整齐的组织起来无法适应传统数据仓库的数据集。网络蜘蛛数据、社交媒体反馈和服务器日志,以及来自供应链、行业、周边环境与监视传感器的数据都使得公司的数据变得比以往越来越复杂。

尽管并不是每个公司都需要处理大型、非结构型数据集的技术。VeriskAnalytics公司首席信息官PerryRotella认为所有的首席信息 官都应当关注大数据分析工具。Verisk帮助金融公司评估风险,与保险公司共同防范保险诈骗,其在2010年的营收超过了10亿美元。

Rotella认为,技术领导者对此应当采取的态度是,数据越多越好,欢迎数据的大幅增长。Rotella的工作是预先寻找事物间的联系与模型。

HMS公司首席信息官CynthiaNustad认为,大数据呈现为一种“爆炸性”增长趋势。HMS公司的业务包括帮助控制联邦医疗保险 (Medicare)和医疗补助(Medicaid)项目成本和私有云服务。其客户包括40多个州的健康与人类服务项目和130多个医疗补助管理计划。 HMS通过阻止错误支付在2010年帮助其客户挽回了18亿美元的损失,节约了数十亿美元。Nustad称:“我们正在收集并追踪大量素材,包括结构性与 非结构性数据,因为你并不是总是知道你将在其中寻找什么东西。”

大数据技术中谈论最多的一项技术是Hadoop。该技术为开源分布式数据处理平台,最初是为编辑网络搜索索引等任务开发的。Hadoop为多个“非关系型(NoSQL)”技术(其包括CouchDB和MongoDB)中的一种,其通过特殊的方式组织网络级数据。

Hadoop可将数据的子集合分配给成百上千台服务器的处理,每台服务器汇报的结果都将被一个主作业调度程序整理,因此其具有处理拍字节级数据的能力。 Hadoop既能够用于分析前的数据准备,也能够作为一种分析工具。没有数千台空闲服务器的公司可以从亚马逊等云厂商那里购买Hadoop实例的按需访 问。

Nustad称,尽管并不是为了其大型的联邦医疗保险和医疗补助索赔数据库,但是HMS正在探索NoSQL技术的使用。其包括了结构性数据,并且能够被 传统的数据仓库技术所处理。她称,在回答什么样的关系型技术是经实践证明最好用的解决方案时,从传统关系型数据库管理出发是并不明智。不过,Nustad 认为Hadoop正在防止欺诈与浪费分析上发挥着重要作用,并且具备分析以各种格式上报的病人看病记录的潜力。

在采访中,那些体验过Hadoop的受访首席信息官们,包括Rotella和Shopzilla公司首席信息官JodyMulkey在内都在将数据服务作为公司一项业务的公司中任职。

Mulkey称:“我们正在使用Hadoop做那些以往使用数据仓库做的事情。更重要的是,我们获得了以前从未用过的切实有用的分析技术。”例如,作为 一家比较购买网站,Shopzilla每天会积累数太字节的数据。他称:“以前,我们必须要对数据进行采样并对数据进行归类。在处理海量数据时,这一工作 量非常繁重。”自从采用了Hadoop,Shopzilla能够分析原始数据,跳过许多中间环节。

GoodSamaritan医院是一家位于印第安纳州西南的社区医院,其处于另一种类型。该医院的首席信息官ChuckChristian称:“我们并 没有我认为是大数据的东西。”尽管如此,管理规定要求促使其存储整如庞大的电子医疗记录等全新的数据类型。他称,这无疑要求他们要能够从数据中收集医疗保 健品质信息。不过,这可能将在地区或国家医疗保健协会中实现,而不是在他们这种单个医院中实现。因此,Christian未必会对这种新技术进行投资。

IslandOneResorts公司首席信息官JohnTernent称,其所面临的分析挑战取决于大数据中的“大”还是“数据”。不过,目前他正在 谨慎地考虑在云上使用Hadoop实例,以作为一种经济的方式分析复杂的抵押贷款组合。目前公司正在管理着佛罗里达州内的8处分时度假村。他称:“这种解 决方案有可能解决我们目前正遇到的实际问题。”

2.商业分析速度加快

肯塔基大学首席信息官VinceKellen认为,大数据技术只是快速分析这一大趋势中的一个元素。他称:“我们期待的是一种更为先进的海量数据分析方法。”与更为快速地分析数据相比,数据的大小并不重要,“因为你想让这一过程快速完成”。

由于目前的计算能够在内存中处理更多的数据,因此与在硬盘中搜索数据相比,其计算出结果的速度要更快。即使你仅处理数G数据,但情况依然与此。

尽管经过数十年的发展,通过缓存频繁访问的数据,数据库性能提升了许多。在加载整个大型数据集至服务器或服务器集群的内存时,这一技术变得更加实用,此时硬盘只是作为备份。由于从旋转的磁盘中检索数据是一个机械过程,因此与在内存中处理数据相比,其速度要慢许多。

Rotella称,他现在几秒中进行的分析在五年前需要花上一个晚上。Rotella的公司主要是对大型数据集进行前瞻性分析,这经常涉及查询、寻找模 型、下次查询前的调整。在分析速度方面,查询完成时间非常重要。他称:“以前,运行时间比建模时间要长,但是现在建模时间要比运行时间长。”

列式数据库服务器改变了关系型数据库的传统行与列结构,解决了另一些性能需求。查询仅访问有用的列,而不是读取整个记录和选取可选列,这极大地提高了组织或测量关键列的应用的性能。

Ternent警告称,列式数据库的性能优势需要配合正确的应用和查询设计。他称:“为了进行区别,你必须以适当的方式问它适当的问题。”此此同时,他 还指出,列式数据库实际上仅对处理超过500G字节数据的应用有意义。他称:“在让列式数据库发挥作用之前,你必须收集一规模的数据,因为它依赖一定水平 的重复提升效率。”

保险与金融服务巨头JohnHancock公司的首席信息官AllanHackney称,为了提高分析性能,硬件也需要进行提升,如增加GPU芯片,其 与游戏系统中用到的图形处理器相同。他称:“可视化需用到的计算方法与统计分析中用到的计算方法非常相似。与普通的PC和服务器处理器相比,图形处理器的 计算速度要快数百倍。我们的分析人员非常喜欢这一设备。”

3.技术成本下降

随着计算能力的增长,分析技术开始从内存与存储价格的下降中获益。同时,随着开源软件逐渐成为商业产品的备选产品,竞争压力也导致商业产品价格进一步下降。

Ternent为开源软件的支持者。在加入IslandOne公司之前,Ternent为开源商业智能公司Pentaho的工程副总裁。他称:“对于我来说,开源决定着涉足领域。因为像IslandOne这样的中等规模公司能够用开源应用R替代SAS进行统计分析。”

以前开源工具仅拥有基本的报告功能,但是现在它们能够提供最为先进的预测分析。他称:“目前开源参与者能够横跨整个连续统一体,这意味着任何人都能够使用它们。”

HMS公司的Nustad认为,计算成本的变化正在改变着一些基础性架构的选择。例如,创建数据仓库的一个传统因素是让数据一起进入拥有强大计算能力的 服务器中以处理它们。当计算能力不足时,从操作系统中分离分析工作负载可以避免日常工作负载的性能出现下降。Nustad称,目前这已经不再是一个合适的 选择了。

她称:“随着硬件与存储越来越便宜,你能够让这些操作系统处理一个商业智能层。”通过重定数据格式和将数据装载至仓库中,直接建立在操作应用上的分析能够更为迅速地提供答案。

Hackney观察认为,尽管性价比趋势有利于管理成本,但是这些潜在的节约优势将被日益增长的能力需求所抵消。尽管JohnHancock每台设备的存储成本在今年下降了2至3%,但是消耗却增长了20%。

4.移动设备的普及

与所有的应用一样,商业智能正日益移动化。对于Nustad来说,移动商业智能具有优先权,因为每个人都希望Nustad能够随时随地亲自访问关于她的 公司是否达到了服务级协议的报告。她还希望为公司的客户提供数据的移动访问,帮助客户监控和管理医疗保健开销。她称:“这是一个客户非常喜欢的功能。在五 年前,客户不需要这一功能,但是现在他们需要这一功能了。”

对于首席信息官来说,要迎合这一趋势更多的是为智能手机、平板电脑和触摸屏设备创建适用的用户界面,而不是更为复杂的分析能力。或许是出于这方面的原因,Kellen认为这相对容易。他称:“对于我来说,这只是小事情。”

Rotella并不认为这很简单。他称:“移动计算影响着每一个人。许多人开始使用iPad工作,同时其它的移动设备正在呈现爆炸式增长。这一趋势正在 加速并改变我们与公司内部计算资源交互的方式。”例如,Verisk已经开发了能够让理赔人在现场快速进行分析的产品,因此他们能够进行重置成本评估。他 称:“这种方式对我们的分析产生了影响,同时也让每一个需要它的人随手就能使用。”

Rotella称:“引发这种挑战的因素在于技术的更新速度。两年前,我们没有iPad,而现在许多人都在使用iPad。随着多种操作系统的出现,我们正力争搞清楚其是如何影响我们的研发的,这样一来我们就不必一而再、再而三的编写这些应用。”

IslandOne的Ternent指出,另一方面,为每一种移动平台创建原生应用的需求可能正在消退,因为目前手机和平板电脑上的浏览器拥有了更为强 大的功能。Ternent称:“如果我能够使用一款专门针对移动设备的基于web的应用,那么我并不能肯定我将会对定制的移动设备应用进行投资。”

5.社交媒体的加入

随着脸谱、推特等社交媒体的兴起,越来越多的公司希望分析这些由网站产生的数据。新推出的分析应用支持人类语言处理、情感分析和网络分析等统计技术,这些并不是典型商业智能工具套件的组成部分。

由于它们都是新的,许多社交媒体分析工具可以作用服务获得。其中一个典型范例是Radian6。Radian6为软件即服务(SaaS)产品,近期已经 被Salesforce.com所收购。Radian6是一种社交媒体仪表盘,为TwITter的留言、脸谱上的帖子、博客与讨论版上的帖子与评论中提及 的特定术语以正负数显示,尤其是为商标名提供生动的直观推断。当营销与客户服务部门购买后,这类工具不再对IT部门有很严重的依赖性。目前,肯塔基大学的 Kellen仍然相信他需要对它们高度关注。他称:“我的工作是识别这些技术,根据竞争力评估哪些算法适合公司,然后开始培训合适的人员。”

与其他公司一样,大学也对监督他们大学的声誉十分感兴趣。与此同时,Kellen表示,他可能还将寻找机会以开发专门用于解决学校所关注问题的应用,如 监督学生入学率等问题。例如,监控学生在社交媒体上的帖子能够有帮于学校与管理人员尽早了解学生在大学里遇到的麻烦。Kellen称,目前戴尔已经做了这 些工作,其产品支持公司探测人们关于故障笔记本电脑的推文。他称,IT开发人员还应当寻找一些办法将社交媒体分析得出的报警信息推送至应用中,以便于公司 对相关事件快速做出反应。

Hackney称:“我们没有诀窍,也没有工具处理和挖掘海量社交媒体帖子的价值。不过,一旦你收集了数据,你需要有能力获取公司事件的充足信息,以将 它们关联起来。”虽然Hackney称JohnHancock在这一领域内的努力还处于“起步阶段”,但是他认为IT部门将在公司数据的社交分析服务所提 供的数据关联中发挥重要作用。例如,如果社交媒体数据显示公司在中西部地区的社会评论越来越负面,那么他将希望看一下如果公司在该地区就价格或策略进行调 整是否会扭转这一负面发展趋势。

Hackney称,发现这类关联的意义在于让公司领导相信对社交媒体的投资具有高回报。他称:“在我所从事的行业中,每个人都是精算师,每个人都在计算,他们不会将任何东西建立在想当然之上。”

以上是小编为大家分享的关于大数据时代:五大商业分析技术趋势的相关内容,更多信息可以关注环球青藤分享更多干货

最近很火的医疗大数据分析到底是个什么鬼

医疗行业是一个生态系统,这个生态系统包含多个重要角色:作为医疗服务提供方的公私立医院、社区医院等医疗机构,作为医疗服务和产品的支付方的商业保险公司以及社会保险,还有作为医疗政策的制定和监管方的各级政府卫生部门,比如卫计委和地方各级卫生厅局,以及作为医药和医疗产品生产和销售方的各个相关企业,他们研发、生产或者销售各类药物以及医疗器械产品。除了以上传统角色,随着可穿戴技术的成熟和逐步市场化,目前医疗行业还出现很多面向消费者健康以及运动的产品和基于数据的服务。他们通过可穿戴设备记录和检测消费者的日常活动和生理指标,也成为医疗行业中不可或缺的一员,并逐步成长为大数据的拥有者。

医疗生态环境在其运转过程中产生了大量的数据。如何更加有效地整合和利用相关数据,为政府更好地履行政策制定和监管职能,是各级政府卫生部门所面临的重要问题之一。如何利用已有病人的数据提高未来临床治疗的效率和质量,并支撑专业的医疗研究是医疗服务方所面临的重要挑战。

存在的问题

随着国家深化医疗卫生体制改革,对医疗卫生信息化建设资金投入的不断增加,促使医疗卫生领域信息化建设取得了一定的成效,在全国医疗卫生信息统计、各级医疗卫生管理体系、基本公共卫生服务提供、医院信息化管理等方面提供了信息化辅助管理手段,提升工作效率和医疗卫生管理水平。 但医疗行业的大数据的收集、分析和应用仍然面临很多的挑战。

首先,医疗行业的大数据分属不同的行业角色。如何整合这些大数据是一个挑战。数据的分享和交换需要合理的政策并考虑各方合理的利益诉求。

其次,医疗行业数据的电子化和数字化仍处于早期阶段,很多数据尚未数字化。比如,医疗行业仍然要求医疗机构将病人档案纸质化,这加大了医疗机构工作人员的工作量,从某种程度上抑制了医疗信息化系统的使用。国内仍然有很多医院包括基层医院并未购买和使用完善的信息化系统来支撑相关数据的数字化。例如,很多基层医院尚未建立基本的医院信息系统(HIS)。电子病历系统(EMR/EHR)在国内医院也未普及。

再次,由于医疗信息系统的提供商非常多,不同医疗机构的需求千变万化,行业内部同类信息系统在数据结构和格式等解决方案上的同质性比较差,数据交换和分享在技术上存在阻力。尽管面临这么多的挑战,如果我们能够围绕医疗大数据制定合理的整合、分析和应用政策和策略,那么医疗大数据及其分析就能帮助提高整个医疗行业的运转效率乃至体验水平。

医疗大数据分析应用

请点击输入图片描述

大数据分析的发展为解决医疗行业所面临的问题提供了可能性。上图总结了大数据分析在医疗行业中潜在的应用场景以及主要用户。我们来看看几个典型应用:

1、临床医疗模式分析

临床过程模式分析功能是指利用大数据分析系统对过程数据进行分析并改进的能力。医疗行业数据分析在医院内部通过数据进行诊疗过程分析,以发现大量临床电子记录数据之间的关系,为今后的循证临床实践提供参考。临床数据分析系统为临床医疗过程全程大数据、实时诊疗数据以及病人电子病历可视化数据的全景分析提供了新途径,特别是对于区域医疗能够观察到病人以前在其他医院的入院情况,支持在医疗成本和效果之间的平衡,帮助医院进行医疗科研。

2、非结构化数据分析

对于存储于分布式数据库系统的数据,需要进行数据过滤、清晰、转换并集成整合,建立临床数据中心。存在于多个部门的非结构化数据,采用NOSQL 数据库进行数据存储,非结构化或半结构化的管理的核心是Apache Hadoop开发环境的实现,MapReduce 能够将大的工作任务分解为一组离散的任务,将分析后的数据集中存储,并提供可视化展现和医疗决策支持访问。

医疗大数据分析与传统数据分析系统的差别在于大数据分析具有非结构化数据的分析能力,这种非结构化数据是传统的医疗数据库不能处理的。临床电子病历中基于XML文档信息、临床影像、医生处方等,非结构化数据占临床数据总量的80%以上,对这一部分的数据进行处理分析,能够得到相关指证,比如,对医学影像分析,通过与相关疾病典型影像特征对比,得到病人疾病诊断,这对医院改进临床效率控制医疗成本有极大益处。

3、管理决策支持

管理决策支持功能强调日常医疗服务过程分析,以支撑管理决策并采取相关措施。一般来说,管理决策支持依赖于医院信息共享互联互通以及信息数据分析能力,对于重大疾病循证分析综合评判对临床医疗质量管理有重大价值,依据电子病历数据分析,开发个性化诊疗方案有助于提升医院精准医疗水平。

从机构组织层面对医院信息系统产生的大数据进行分析,对于跨部门操作流程进行改进具有重要意义,综合性数据分析能帮助管理者全面了解组织机构存在的薄弱环节并采取对应措施,从实践看,建立临床数据中心数据仓库并与实际生产系统实时交互,对于医疗质量水平提升和病人临床安全具有重要保障作用。

4、预测分析功能

通过医疗大数据使用统计分析工具建立评价模型,对疾病发展转归进行预测是医疗大数据应用的重要方面。大数据的预测功能强调对通过大量数据分析对未来趋势预测,医疗机构的数据分析平台需要与临床数据中心、预测分析算法(如:回归分析、机器学习、神经网络等)等相结合,向医护管工作者提供可视化界面,帮助管理和临床决策。临床大数据中心的建设能够通过过去历史数据对未来提供参考,有助于医院精细化管理和精准化医疗。

在医疗机构,对二次住院预测分析大大降低了病情的不确定性,重症中心ICU病人全程生理参数数据监控分析,进行关键指标的警示和交互干预,使医护工作更有效率,优化了相关操作,降低了医疗风险。同时,有利于形成医护患协同的病人全过程的疾病管理分析,产生最佳医疗实践的疾病诊治流程。

5、数据闭环追溯

医疗数据信息如:费用成本数据、临床数据、药学信息、病人行为数据、设备传感数据等均需实时采集或尽量实时采集。传统临床信息系统数据分散在各个应用系统中,数据不一致,产生冗余矛盾,而且不同部门的设备或不同临床信息应用内部信息数据孤立使临床过程工作流优化也存在困难。数据的闭环追溯有利于以病人为中心的临床需求和部门服务与设备应用的监控。大数据分析提供了全流程、全方位的解决能力,业务系统的数据可实时与数据中心进行数据交互,通过大数据算法进行深度评价分析,医护工作者可即时监控病人状态、追踪相关的警示信息并采取相应措施,对医疗安全和用药安全有重要价值。

总的来说,大数据分析在医疗行业具有广泛的应用前景。首先,医疗行业各个主要角色已经或者开始积累大量数据并为大数据分析创造了条件。不同数据集合的整合和分析面临政策和利益诉求的挑战,但是也带来了新的机遇。其次,医疗行业是一个生态系统并面临诸多问题,大数据分析为解决这些系统性问题提供了新工具。

亿信华辰作为数据分析软件领导厂商,紧跟医疗卫生领域发展趋势,面向国家卫健委及各级医疗卫生单位、机构,提供灵活、可适配的解决方案。

请点击输入图片描述

提供集数据采集、数据治理(含元数据、数据标准、数据质量、数据生命周期管理、数据安全)、数据分析与挖掘、可视化展示一体化的解决方案。

常用的关系型数据库有哪些

常见的关系型数据库管理系统产品有Oracle、SQL Server、Sybase、DB2、Access等。 1.Oracle

Oracle是1983年推出的世界上第一个开放式商品化关系型数据库管理系统。它采用标准的SQL结构化查询语言,支持多种数据类型,提供面向对象存储的数据支持,具有第四代语言开发工具,支持Unix、Windows NT、OS/2、Novell等多种平台。除此之外,它还具有很好的并行处理功能。Oracle产品主要由Oracle服务器产品、Oracle开发工具、Oracle应用软件组成,也有基于微机的数据库产品。主要满足对银行、金融、保险等企业、事业开发大型数据库的需求。

2.SQL Server

SQL即结构化查询语言(Structured Query Language,简称为SQL)。SQL Server最早出现在1988年,当时只能在OS/2操作系统上运行。2000年12月微软发布了SQL Server 2000,该软件可以运行于Windows NT/2000/XP等多种操作系统之上,是支持客户机/服务器结构的数据库管理系统,它可以帮助各种规模的企业管理数据。

随着用户群的不断增大,SQL Server在易用性、可靠性、可收缩性、支持数据仓库、系统集成等方面日趋完美。特别是SQL Server的数据库搜索引擎,可以在绝大多数的操作系统之上运行,并针对海量数据的查询进行了优化。目前SQL Server已经成为应用最广泛的数据库产品之一。

由于使用SQL Server不但要掌握SQL Server的操作,而且还要能熟练掌握Windows NT/2000 Server的运行机制,以及SQL语言,所以对非专业人员的学习和使用有一定的难度。

3.Sybase

1987年推出的大型关系型数据库管理系统Sybase,能运行于OS/2、Unix、Windows NT等多种平台,它支持标准的关系型数据库语言SQL,使用客户机/服务器模式,采用开放体系结构,能实现网络环境下各节点上服务器的数据库互访操作。技术先进、性能优良,是开发大中型数据库的工具。Sybase产品主要由服务器产品Sybase SQL Server、客户产品Sybase SQL Toolset和接口软件Sybase Client/Server Interface组成,还有著名的数据库应用开发工具PowerBuilder。

4.DB2

DB2是基于SQL的关系型数据库产品。20世纪80年代初期DB2的重点放在大型的主机平台上。到90年代初,DB2发展到中型机、小型机以及微机平台。DB2适用于各种硬件与软件平台。各种平台上的DB2有共同的应用程序接口,运行在一种平台上的程序可以很容易地移植到其他平台。DB2的用户主要分布在金融、商业、铁路、航空、医院、旅游等各个领域,以金融系统的应用最为突出。

5.Access

Access是在Windows操作系统下工作的关系型数据库管理系统。它采用了Windows程序设计理念,以Windows特有的技术设计查询、用户界面、报表等数据对象,内嵌了VBA(全称为Visual Basic Application)程序设计语言,具有集成的开发环境。Access提供图形化的查询工具和屏幕、报表生成器,用户建立复杂的报表、界面无需编程和了解SQL语言,它会自动生成SQL代码。

Access被集成到Office中,具有Office系列软件的一般特点,如菜单、工具栏等。与其他数据库管理系统软件相比,更加简单易学,一个普通的计算机用户,没有程序语言基础,仍然可以快速地掌握和使用它。最重要的一点是,Access的功能比较强大,足以应付一般的数据管理及处理需要,适用于中小型企业数据管理的需求。当然,在数据定义、数据安全可靠、数据有效控制等方面,它比前面几种数据库产品要逊色不少。

sql统计医院一段时间床位的使用率。

如果是ORACLE的,我会写。

select b.tdate, nvl(a.inqty,0) as inqty

from

(select count(1) as inqty, trunc(入院日期) as tdate

from table

group by trunc(入院日期)) a,

(select to_date('2011-03-01','YYYY-MM-DD') + rownum - 1 as tdate

from all_objects

where rownum = (to_date('2011-03-05','YYYY-MM-DD') - to_date('2011-03-01','YYYY-MM-DD') + 1) ) b

where b.tdate = a.tdate(+)

order by b.tdate

以上语法,a表是根据日期分组,取每天入院的人数,但是,这个日期是不连续的,而b表是构建一个时间段的连续日期,这样把b表和a表做一个外连接,就可以得到这个连续时间段每天入院的人数了。

如果是SQLSERVER等数据库,用的不太多,不清楚b表该怎么构建。2005以上的版本好像有一个row_number() 这个函数,可以利用这个来构造连续的日期。

似乎可以这么写,2005以上版本,不太确定,这个是仿着ORACLE写的,也没有环境检查,语法可能有点错误,不过就是这个意思。

select b.tdate, a.inqty

from

(select count(1) as inqty, 入院日期 as tdate

from table

group by 入院日期) a,

(select dateadd(dd, rownum - 1,convert(datetime,'2011-03-01',121)) as tdate

from (SELECT Row_Number() OVER (partition by id ORDER BY id desc) rownum FROM sysobjects ) all_object

where rownum = datediff(dd,convert(datetime,'2011-03-15',121),convert(datetime,'2011-03-01',121)) + 1 ) b

where b.tdate = a.tdate(+)

order by tdate

国内五大论文数据库?

国内五大论文数据库如下:

一、中国知网提供的《中国学术期刊(光盘版)》

也称中国期刊全文数据库由清华同方股份有限公司出版。

收录1994年以来国内6 600种期刊,包括了学术期刊于非学术期刊,涵盖理工、农业、医药卫生、文史哲、政治军事与法律、教育与社会科学综合、电子技术与信息科学、经济与管理。

收录的学术期刊同时作为“中国学术期刊综合评价数据库统计源期刊”。

但是收录的期刊不很全面,一些重要期刊未能收录。

二、中国生物医学文献数据库(CBMDISC)

数据库是中国医学科学院信息研究所开发研制,收录了自1978年以来1 600余种中国生物医学期刊。

范围涉及基础医学、临床医学、预防医学、药学、中医学及中药学等生物医学的各个领域。

三、中文生物医学期刊数据库(CMCC)

由中国人民解放军医学图书馆数据库研究部研制开发。

收录了1994年以来国内正式出版发行的生物医学期刊和一些自办发行的生物医学刊物1 000余种的文献题录和文摘。

涉及的主要学科领域有:基础医学、临床医学、预防医学、药学、医学生物学、中医学、中药学、医院管理及医学信息等生物医学的各个领域。

并具有成果查新功能医学全在线

四、万方数据资源系统(China Info)

由中国科技信息研究所,万方数据股份有限公司研制。

该数据库收录的期刊学科范围广,包括了学术期刊于非学术期刊,提供约2 000种的电子期刊的全文检索。

被收录的学术期刊都获得了“中国核心期刊(遴选)数据库来源期刊”的收录证书。

个别期刊甚至将“遴选”改成“精选”,或者干脆去掉。

很多作者因此误以为这就是核心期刊。

五、维普数据库

也称中文科技期刊数据库,维普科技期刊数据库,由中国科学技术信息研究所重庆分所出版。

收录了1989年以来我国自然科学、工程技术、农业科学、医药卫生、经济管理、教育科学和图书情报等学科9 000余种期刊,包括了学术与非学术期刊。

收录期刊数量很大,但不足之处是部分国家新闻出版总署公布的非法期刊也被收录了。

一般的,学术期刊都能进入至少1个国内期刊数据库。

期刊据数据库不是期刊的评价体系,对科研处的期刊性质评价也就缺乏足够的意义,故不宜作为期刊性质评价的依据。

另外还有:

1、万方数据

万方数据提供中国大陆科技期刊检索,是万方数据股份有限公司建立的专业学术知识服务网站。

隶属于万方数据资源系统,对外服务数据由万方数据资源系统统一部署提供。

2、全国报刊索引

收录全国包括港台地区的期刊8000种左右,月报道量在1.8万条以上,年报道量在44万条左右,书本式用户有3500多家,现又出版光盘数据库。

反映了中国政治、经济、军事、科学、文化、文学艺术、历史地理、科技等方面的发展情况,提供了国内外最新学术进展信息。

该索引是我国收录报刊种类最多,内容涉及范围最广,持续出版时间最长,与新文献保持同步发展的权威性检索刊物,也是查找建国以来报刊论文资料最重要的检索工具。

正文采用分类编排,先后采用过《中国人民大学图书分类法》和自编的《报刊资料分类表》,1980年起,仿《中国图书馆图书分类法》分21类编排,1992年全面改用《中国图书资料分类法》(第三版)编排,2000年开始用《中国图书馆分类法》(第四版)标引,计算机编排。

在著录上,《全国报刊索引》从1991年起采用国家标准——《检索期刊条目著录规则》进行著录,包括题名、著译者姓名、报刊名、版本、卷期标识、起止页码、附注等项。

同时,“哲社版”采用电脑编排,增加了“著者索引”、“题中人名分析索引”、“引用报刊一览表”,方便了读者的使用。

3、超星数字图书馆

为目前世界最大的中文在线数字图书馆,提供大量的电子图书资源提供阅读,其中包括文学、经济、计算机等五十余大类,数十万册电子图书,300万篇论文,全文总量4亿余页,数据总量30000GB,大量免费电子图书,并且每天仍在不断的增加与更新。

覆盖范围:涉及哲学、宗教、社科总论、经典理论、民族学、经济学、自然科学总论、计算机等各个学科门类。

本馆已订购67万余册。

收录年限:1977年至今。

4、维普资讯

维普资讯是科学技术部西南信息中心下属的一家大型的专业化数据公司,是中文期刊数据库建设事业的奠基人,公司全称重庆维普资讯有限公司。

目前已经成为中国最大的综合文献数据库。

从1989年开始,一直致力于对海量的报刊数据进行科学严谨的研究、分析,采集、加工等深层次开发和推广应用。

5、中宏数据库

中宏数据库由国家发改委所属的中国宏观经济学会、中宏基金、中国宏观经济信息网、中宏经济研究中心联合研创。

是由18类大库、74类中库组成,涵盖了九十年代以来宏观经济、区域经济、产业经济、金融保险、投资消费、世界经济、政策法规、统计数字、研究报告等方面的详尽内容,是目前国内门类最全,分类最细,容量最大的经济类数据库。

发展现状

在数据库的发展历史上,数据库先后经历了层次数据库、网状数据库和关系数据库等各个阶段的发展,数据库技术在各个方面的快速的发展。特别是关系型数据库已经成为目前数据库产品中最重要的一员,80年代以来,几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,

即使一些非关系数据库产品也几乎都有支持关系数据库的接口。这主要是传统的关系型数据库可以比较好的解决管理和存储关系型数据的问题。随着云计算的发展和大数据时代的到来,关系型数据库越来越无法满足需要,

这主要是由于越来越多的半关系型和非关系型数据需要用数据库进行存储管理,以此同时,分布式技术等新技术的出现也对数据库的技术提出了新的要求,于是越来越多的非关系型数据库就开始出现,这类数据库与传统的关系型数据库在设计和数据结构有了很大的不同,

它们更强调数据库数据的高并发读写和存储大数据,这类数据库一般被称为NoSQL(Not only SQL)数据库。而传统的关系型数据库在一些传统领域依然保持了强大的生命力。

以上内容参考:百度百科——数据库

在医院管理系统中用SQL查询语句查用药明细

select * from 医院管理系统 where 日期字段 between '某年某月某日' and '某年某月某日' and 药品编号='药品编号' and 医师编号='医师编号'


网页名称:医院nosql,医院等级划分标准
当前路径:http://ybzwz.com/article/hdppoc.html