python转置函数,python的转置
python中怎样让数据列转置
需求:
站在用户的角度思考问题,与客户深入沟通,找到永修网站设计与永修网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都做网站、网站建设、企业官网、英文网站、手机端网站、网站推广、域名注册、雅安服务器托管、企业邮箱。业务覆盖永修地区。
你需要转置一个二维数组,将行列互换.
讨论:
你需要确保该数组的行列数都是相同的.比如:
arr = [[1, 2, 3], [4, 5, 6], [7,8, 9], [10, 11, 12]]
列表递推式提供了一个简便的矩阵转置的方法:
print [[r[col] for r in arr] for col in range(len(arr[0]))]
[[1, 4, 7, 10], [2, 5, 8, 11],[3, 6, 9, 12]]
另一个更快和高级一些的方法,可以使用zip函数:
print map(list,
zip(*arr))
本节提供了关于矩阵转置的两个方法,一个比较清晰简单,另一个比较快速但有些隐晦.
有时候,数据到来的时候使用错误的方式,比如,你使用微软的ADO接口访问数据库,由于Python和MS在语言实现上的差别.
Getrows方法在Python中可能返回的是列值,和方法的名称不同.本节给的出的方法就是这个问题常见的解决方案,一个更清晰,一个更快速.
在列表递推式版本中,内层递推式表示选则什么(行),外层递推式表示选择者(列).这个过程完成后就实现了转置.
在zip版本中,我们使用*arr语法将一维数组传递给zip做为参数,接着,zip返回一个元组做为结果.然后我们对每一个元组使用list方法,产生了列表的列表(即矩阵).因为我们没有直接将zip的结果表示为list,
所以我们可以我们可以使用itertools.izip来稍微的提高效率(因为izip并没有将数据在内存中组织为列表).
import itertools
print map(list,
itertools.izip(*arr))
但是,在特定的情况下,上面的方法对效率的微弱提升不能弥补对复杂度的增加.
关于*args和**kwds语法:
*args(实际上,*号后面跟着变量名)语法在Python中表示传递任意的位置变量,当你使用这个语法的时候(比如,你在定义函数时使用),Python将这个变量和一个元组绑定,并保留所有的位置信息,
而不是具体的变量.当你使用这个方法传递参数时,变量可以是任意的可迭代对象(其实可以是任何表达式,只要返回值是迭代器).
**kwds语法在Python中用于接收命名参数.当你用这个方式传递参数时,Python将变量和一个dict绑定,保留所有命名参数,而不是具体的变量值.当你传递参数时,变量必须是dict类型(或者是返回值为dict类型的表达式).
如果你要转置很大的数组,使用Numeric Python或其它第三方包,它们定义了很多方法,足够让你头晕的.
相关说明:
zip(...)
zip(seq1 [,
seq2 [...]]) - [(seq1[0], seq2[0] ...),
(...)]
Return a
list of tuples, where each tuple contains the i-th element
from each of
the argument sequences. The returned list is truncated
in length to
the length of the shortest argument sequence.
Python实现矩阵转置的方法分析
Python实现矩阵转置的方法分析
本文实例讲述了Python实现矩阵转置的方法。分享给大家供大家参考,具体如下:
前几天群里有同学提出了一个问题:手头现在有个列表,列表里面两个元素,比如[1, 2],之后不断的添加新的列表,往原来相应位置添加。例如添加[3, 4]使原列表扩充为[[1, 3], [2, 4]],再添加[5, 6]扩充为[[1, 3, 5], [2, 4, 6]]等等。
其实不动脑筋的话,用个二重循环很容易写出来:
def trans(m):
a = [[] for i in m[0]]
for i in m:
for j in range(len(i)):
a[j].append(i[j])
return a
m = [[1, 2], [3, 4], [5, 6]] # 想象第一个列表是原始的,后面的是往里添加的
print trans(m) # result:[[1, 3, 5], [ 2, 4, 6]]
然而不管怎么看这种代码都很丑。
仔细看了一下m这种结构。等等,这不是字典的iteritems()的结果么?如果dict(m),那么结果——不就是keys()和values()么?
于是利用字典转换一下:
def trans(m):
d = dict(m)
return [d.keys(), d.values()]
可是再仔细想想,这里面有bug。如果添加列表的第一个元素相同,也就是转化之后dict的key相同,那肯定就不行了呀!况且,如果原始列表不是两个,而是多个,肯定不能用字典的呀!于是这种方法作罢,还是好好看看列表的形状。
然后又是一个不小心的发现:
这种转置矩阵的即时感是怎么回事?
没错,这个问题的本质就是求解转置矩阵。于是就简单了,还是用个不动脑筋的办法:
def trans(m):
for i in range(len(m)):
for j in range(i):
m[i][j], m[j][i] = m[j][i], m[i][j]
return m
m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print trans(m)
其实还是有点bug的,看起来是好用的,然而这个矩阵要求行列长度相同才行。
最后,群里某大神说:如果只是转置矩阵的话,直接zip就好了。这才想起来zip的本质就是这样的,取出列表中的对应位置的元素,组成新列表,正是这个题目要做的。
所以最终,这个题目(转置矩阵)的python解法就相当奇妙了:
def trans(m):
return zip(*d)
没错,就这么简单。python的魅力。
pandas常用函数汇总
pandas官方文档:
对常用函数做了汇总,每个函数的参数可能不是全的,但是常用的,不常用的没总结,如有问题,请不吝赐教,谢谢!
1、创建Series
通用函数:pd.Series(values,index)
1)pd.Series([1,2,3],index=[‘a’,‘b’,‘c‘])
2)pd.Series(np.array([1,2,3]),index=[‘a’,‘b’,‘c‘])
3)pd.Series({ 'a':1, 'b':2, 'c':3})
Series转字典:Series.to_dict()
说明:Series的values参数是python中常见的一维数据类型。
2、属性
1)Series.values ---array([1,2,3])
Series的values是array类型
2)Series.index---index([‘a’,‘b’,‘c‘])
未指定index时,自动生成 0-(N-1)的整数索引,
指定 index时,使用指定索引。
3、Series的索引与切片
Series[0] / Series['a'] : Sereis可以位置索引或标签索引,也可以进行切片操作
1、创建DataFrame
1) 创建DataFrame的通用函数:
df = pd.DataFrame(values,index,columns)
pd.dataFrame([[1,2,3],[4,5,6],[7,8,9]],index=['a','b','c'],columns=['bj','sh','sz'])
pd.dataFrame(np.arange(1,10).reshape(3,3),index=['a','b','c'],columns=['bj','sh','sz'])
pd.dataFrame('bj':[1,4,7],'sh':[2,5,8],'sz':[3,6,9],index=['a','b','c'])
说明:创建方法与Sries类似,Series的values参数是python中常见的一维数据类型,DataFrame的values参数是python中常见的二维数据类型。
2) 通过网页中复制数据快捷创建
import webbrowser
link = ''
webbrowser.open(link)
打开界面进行复制,将数据复制到粘贴板中
df = pd.read_clipboard() #从粘贴板中读取数据
3)通过Series创建DataFrame
df = pd.DataFrame([s1,s2,s3],columns=['bj','sh','sz'])
注意:单独的s1,s2,s3是纵向排列的的Series,但是在DataFrame中是横向排列的。
自己总结:Series除了打印出来是Series格式外,其他时候可以直接当作list来操作。
2、属性
1)df.columns
通过columns生成新的DataFrame
df_new = pd.DataFrame(df,columns=['x1','x2'])
或者df_new = df[['x1','x2']]
2)df.shape 显示行列数
3)df.head() 默认显示前5行
4)df.tail() 默认显示后5行
3、获取DataFrame的列
1)获取DataFrame某一列
df.x1或df['x1']:返回值是Series,可以理解为一个DataFrame是由多个Series组成的。
2) 获取DataFrame某几列
df_new = df[['x1','x2','x3']]
4、为某列赋值
1) df['x1'] = range(10)
2) df['x1'] = numpy.arange(10)
3) df['x1'] = pd.Series(np.arange(10))
说明:类似于创建Series
5、为某列对应的特定行重新赋值
df['x1'] = pd.Series([2,3],index=[0,1])
将列为x1,行索引为0和1的值改为2,3
6、获取DadaFrame的行
for row in DataFrame.iterrows():
print(row[0],row[1])
#每个row是一个元祖,包含2个元素,row[0]是整型索引,row[1]是Series,所以从行的角度也可以看出,一个DataFrame是由多个Series组成的。
7、DataFrame的转置
df_new = df.T
1、粘贴板的io
df = pd.read_clipboard()
df.to_clipboard()
2、csv的io
df.to_csv('xxx.csv')
df = pd.read_csv('xxx.csv')
3、json的io
df.to_json()
pd.read_json(df.to_json())
4、excel的io
df.to_excel('xx.xlsx')
df = pd.read_excel('xx.xlsx')
5、df = pd.read_sql('')
df.to_sql('')
1、iloc
sub_df = df.iloc[10:20,:] 选取DataFrame的10-20行,所有列数据
sub_df = df.iloc[10:20,0:2]
说明:iloc函数是位置索引,与索引的名字无关。
2、loc
sub_df = df.loc[10:20,:'movie_name']
说明:loc是标签索引,10,20,'movie_name' 都是索引名字,与位置无关。
1、Series.reindex(index=['x1','x2','x3'],fill_value=10)
将df重新索引,并且将NaN空值用10进行填充
2、Series.reindex(index=range(15),method='ffill')
前项填充,后面的值用前面的值进行填充
通过reindex想到,如果想新增一个空列或者空行,可以用reindex方法,同样地,想减少某些行或者某些列,也可以用reindex方法。
继reindex之后删除行列的函数操作
Series.drop('A') #删除'A'所对应的值
DataFrame.drop(label,axis)
label可以是行名也可以是列名,label是行的话axis是0,label是列的话axis是1。
** 删除行还可以用 del df['A']
nan是numpy的一种数据类型,np.nan,float类型
任何数据与nan的运算结果都是nan
1、nan in Series
Series.isnull() --返回value为True或者False的Series
Series.notnull() --返回value为True或者False的Series
Series.dropna() --返回删除nan值后的Series
Series.fillna(method='ffill') --前项插值,按照前面的值填充后面的空值
2、nan in DataFrame
df.isnull() --返回value为True或者False的DataFrame
df.notnull() --返回value为True或者False的DataFrame
df.dropna(axis=0/1,how='any/all',thresh=None)
说明:axis表示删除行为nan或者列为nan;
any表示只要有一个为空,all表示行中的每个元素或者列中的每个元素为空;
thresh是阈值的意思,表示某行或者某列nan的个数达到阈值的个数时才删除该行或该列。
df.fillna(value=1) ---所有的空值都填充为1
df.fillna(value={0:0,1:1,2:2}) ---将0列的空值填为0,1列的空值填为1,2列的空值填为2,默认为填充列
注意:fillna和dropna的特点,生成新的DataFrame,原来的DataFrame不变。
1、多重索引介绍
Series = pd.Series(np.random.randn(6),index=[['1','1','1','2','2','2'],['a','b','c','a','b','c']])
'1','2'为一级索引,'a','b','c'为二级索引
df 可以看做是索引的'1','2'的Series
Series['1'] --Series
Series['1']['a'] --value
Series[:,'a'] --选择'1'和'2'中的'a'对应的值
2、多重索引格式转为二维DataFrame
df = Series.unstack() --转为二维DataFrame
3、多重索引在DataFrame中的操作
1、 map函数与apply函数、applymap函数的区别:
1)map函数对Series中的每个元素作用;
2)applymap函数对DataFrame中的每个元素作用;
3)apply函数对对DataFrame和Series的一列做整体运算。
2、Series.replace(to_replace=[2,3,4],values=[20,30,40]) 替换Series中多个值
Series.replace({1:10,2:20}) 将索引为1的值替换为10,将索引为2的值替换为20
df.sum() --默认按照列进行求和,nan的值被忽略
df.min() --默认按照列求最小值
df.max() --默认按照列求最大值
df.mean() --默认按照列求平均值
df.describe() --默认按照列进行描述
df.sum(axis=1) --按行求和,nan的值被忽略
#axis=0表示对横轴进行操作,但是运算中表现为纵轴操作
#axis=1表示对纵轴进行操作,但是运算中表现为横轴操作
bins = [0,59,70,80,100],bins是分割范围
score_cat = pd.cut(Series,bins) ---得到catgory类型的数据
DataFrame的分箱技术很棒啊!
pd['catgory'] = pd.cut(df['a'],bins=[0,59,70,80,100],labels=['low','ok','good','great'])
--新增一列,将a列的值按照labels进行分类标记,good!!!
#生成长度为3的随机字符串 pd.util.testing.rands(3)
1、按照一列分组
g = df.groupby('city')
g是分组类型数据,打印不出来,所以看不到,但是有属性和方法可以间接的了解
1) g.groups --得到分的几个组,和每个组包含的索引
2)g.get_group('BJ') --得到'BJ'所对应的组
3)groupby = split +apply +combine
g.mean() --求每组的平均值
g.max() --求每组的最大值
g.min() --求每组的最小值
g.count()
g.describe()
4)g是一个可迭代对象,可以用list函数将其转化为list
list(g) -- [('组名1',DataFrame1),('组名2',DataFrame2),(),()]
dict(list(g)) --将其转化为字典
同时可以通过for循环进行遍历操作:for item,desc in g:print(item,desc)
#怪不得分组后不是DataFrame,因为元组的第一个元素是'分组名'。
2、按照多列分组
g_new = df.groupby(['city','wind'])
得到生成器((('分组1','分组2'),DataFrame),(),()...)
g_new.get_group(('分组1','分组2'))
for (name_1,name_2),group in g_new:
print((name_1,name_2),group)
g.mean() --求每组的平均值
与g.agg('mean')方法一样
pd.pivot_table(df,index=['',''],aggfuc='sum',values=['',''])
index是分组的组名,values是透视表呈现结果的列,columns是values下的分解
#感觉透视表呈现的结果就是groupby+agg后的结果
#分析者需要对数据结构有一定的了解
df.sort_values(by='',ascending=True/False)[:10] df可以索引
df.value_counts() --按值计数
df.['a'] = df['b'].apply(lambda x:x0) --DataFrame中的True/False
通过g.size()可以看到被groupby之后的数据,得到的是一个Series
1、Series的排序:
1)对值进行排序
Series.sort_values() ---直接对Series的值进行排序
2)通过索引进行排序
Series.sort_index()
#默认都是升序排列
2、DataFrame的排序
df.sort_values(by='') --按照某列的顺序进行排序
df['a'].sort_values() --返回对a列数据的排序结果,只返回a列
1、df.index = Series(['a','b','c']) 直接对index赋予新值
2、df.index = df.index.map(str.upper)
map函数中只传入新的函数名即可
3、df.rename(index=str.upper,columns=str.lower)
或者传递字典,进行一一转换
pd.merge(df1,df2,on=None,how='left/right/inner/outer')
pd.merge(df1,df2) --没有on参数默认先找相同的columns,然后在columns下找相同的values
pd.merge(df1,df2,on='columns') --on参数是指按照指定列进行merge
left:表示以左边的数据表为基准,进行填充右面的数据
right:表示以右边的数据表为基准,填充左边的数据
outer:以on的指定列的所有值为基准,填充两边的数据
inner:默认inner,相同on指定的columns下的相同values对应的左右两边的数据
1、concat拼接
pd.concat([Series1,Series2])
pd.concat([df1,df2]) -- 上下叠加,将没有的列进行填充
2、combine组合
Series1.combine_first(Series2) --用Series2的值去填充Series1中为空的值
df1.combine_first(df2) ---用df2将df1中的空值填充
df['A'] = df['A'].apply(str.upper) ---apply函数中也只输入函数名
len(df) --求df的长度
len(df['a'].unique()) --查看a列中不重复数据的多少
Series.duplicated() --返回一列True/False的Series
Series.drop_duplicates() --删除重复值
df.drop_duplicates('a',keep='first/last')
df.drop_duplicates() --删除完全重复的行
参数:'a'表示以a列为基准,删除重复值
first表示保留第一个,last表示保留最后一个
data_list = pd.date_range(start,end,period='D',freq)
period='D',以天为单位
freq = 'W' 以周为单位
freq = 'W-Mon'以每周一位单位
freq = '5H' 以5h为单位
以data_range作为索引提取数据比较简单
df[datetime(2017,9,1)]
df['2017-09-01']
df['20170901']
df['201709']
对时间序列数据进行分组聚合操作:
s1.resample('M').mean() --以月为单位进行采样,然后求每组的平均值
s1.resample('H').ffill() --前项填充
s1.resample('H').bfill() --后项填充
补充:1)jupyter中可以执行linux命令,太棒了!
!ls
!more xxx.csv
!pwd 等等
2)jupyter 查看函数帮助的快捷键:摁住shift + tab 棒!!!
python transpose函数怎么用
比如,将A1:E1转置到A3:A7
首先选定A3:A7然后输入
=TRANSPOSE($A$1:$E$1)
最后按【组合键】确认。
python中transpose是什么意思
我先来一个举例:
arr = np.arange(16).reshape((2, 2, 4))
arr的array是这样的
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
我们对arr进行transpose转置,arr2 = arr.transpose((1,0,2)),结果是这样:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
这是怎么来的呢。
arr.transpose((1,0,2))的1,0,2三个数分别代表shape()的三个数的顺序,初始的shape是(2,2,4),也就是2维的2 x 4矩阵,索引分别是shape的[0],[1],[2],arr.transpose((1,0,2))之后,我们的索引就变成了shape[1][0][2],对应shape值是shape(2,2,4),所以矩阵形状不变。
与此同时,我们矩阵的索引也发生了类似变化,如arr中的4,索引是arr[0,1,0],arr中的5是arr[0,1,1],变成arr2后,4的位置应该是在[1,0,0],5的位置变成[1,0,1],同理8的索引从[1,0,0]变成[0,1,0]。
python自带及pandas、numpy数据结构(一)
1.python自带数据结构:序列(如list)、映射(如字典)、集合(set)。
以下只介绍序列中的list:
创建list:
list1 = []
list1 = [1,2,3,4,5,6,7,8,9] #逗号隔开
list2 = [[1,2],[3,4],[5,6],[7,8]] #list2长度(len(list2))为2,list2[0] = [1,2]
liststring = list(“thisisalist”) #只用于创建字符串列表
索引list:
e = list1[0] #下标从零开始,用中括号
分片list:
es = list1[0:3]
es = list1[0:9:2] #步长在第二个冒号后
list拼接(list1.append(obj)、加运算及乘运算):
list长度:
list每个元素乘一个数值:
list2 = numpy.dot(list2,2)
list类似矩阵相乘(每个元素对应相乘取和):
list3 = numpy.dot(list1,list1)
#要求相乘的两个list长度相同
list3 = numpy.dot(list2,list22)
#要求numpy.shape(list2)和numpy.shape(list22)满足“左行等于右列”的矩阵相乘条件,相乘结果numpy.shape(list3)满足“左列右行”
2.numpy数据结构:
Array:
产生array:
data=np.array([[1, 9, 6], [2, 8, 5], [3, 7, 4]])
data=np.array(list1)
data1 = np.zeros(5) #data1.shape = (5,),5列
data1 = np.eye(5)
索引array:
datacut = data[0,2] #取第零行第二列,此处是6
切片array:
datacut = data[0:2,2] # array([6, 5])
array长度:
data.shape
data.size
np.shape(data)
np.size(data)
len(data)
array拼接:
#括号内也有一个括号(中括号或者小括号)!
d = np.concatenate((data,data))
d = np.concatenate((data,data),axis = 1) #对应行拼接
array加法:逐个相加
array乘法:
d = data data #逐个相乘
d = np.dot(data,data) #矩阵相乘
d = data 3 #每个元素乘3
d = np.dot(data,3) #每个元素乘3
array矩阵运算:
取逆 : np.linalg.inv(data)
转置:data.T
所有元素求和 : np.sum(data)
生成随机数:np.random.normal(loc=0, scale=10, size=None)
生成标准正态分布随机数组:np.random.normal(size=(4,4))
生成二维随机数组:
np.random.multivariate_normal([0,0],np.eye(2))
生成范围在0到1之间的随机矩阵(M,N):
np.random.randint(0,2,(M,N))
Matrix:
创建matrix:
mat1 = np.mat([[1, 2, 3], [4, 5, 6]])
mat1 = np.mat(list)
mat1 = np.mat(data)
matrix是二维的,所有+,-,*都是矩阵操作。
matrix索引和分列:
mat1[0:2,1]
matrix转置:
np.transpose(mat1)
mat1.transpose()
matrix拼接:
np.concatenate([mat1,mat1])
np.concatenate([mat1,mat1],axis = 1)
numpy数据结构总结:对于numpy中的数据结构的操作方法基本相同:
创建:np.mat(list),np.array(list)
矩阵乘:np.dot(x,y)
转置:x.T or np.transpose(x)
拼接:np.concatenate([x,y],axis = 1)
索引:mat[0:1,4],ary[0:1,4]
3.pandas数据结构:
Series:
创建series:
s = pd.Series([[1,2,3],[4,5,6]],index = [‘a’,‘b’])
索引series:
s1 = s[‘b’]
拼接series:
pd.concat([s1,s1],axis = 1) #也可使用s.append(s)
DataFrame:
创建DaraFrame:
df = pd.DataFrame([[1,2,3],[1,2,3]],index = ['a','b'],columns = ['x','y','z'])
df取某一列:
dfc1 =df.x
dfc1 = df[‘x’]
dfc2 = df.iloc[:,0] #用.iloc方括号里是数字而不是column名!
dfc2 = df.iloc[:,0:3]
df取某一行:
dfr1 = df.iloc[0]
df1 = df.iloc[0:2]
df1 = df[0:2] #这种方法只能用于取一个区间
df取某个值:
dfc2 = df.iloc[0,0]
dfc2 = df.iloc[0:2,0:3]
网页题目:python转置函数,python的转置
当前路径:http://ybzwz.com/article/hdohcc.html