如何实现ApacheFlink中Flink数据流转换
本篇文章给大家分享的是有关如何实现Apache Flink中Flink数据流转换,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
滨湖网站制作公司哪家好,找成都创新互联公司!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设等网站项目制作,到程序开发,运营维护。成都创新互联公司从2013年成立到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选成都创新互联公司。
Operators操作转换一个或多个DataStream到一个新的DataStream 。
filter function
Scala
object DataStreamTransformationApp { def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment filterFunction(env) env.execute("DataStreamTransformationApp") } def filterFunction(env: StreamExecutionEnvironment): Unit = { val data=env.addSource(new CustomNonParallelSourceFunction) data.map(x=>{ println("received:" + x) x }).filter(_%2 == 0).print().setParallelism(1) } }
数据源选择之前的任意一个数据源即可。
这里的map中没有做任何实质性的操作,filter中将所有的数都对2取模操作,打印结果如下:
received:1 received:2 2 received:3 received:4 4 received:5 received:6 6 received:7 received:8 8
说明map中得到的所有的数据,而在filter中进行了过滤操作。
Java
public static void filterFunction(StreamExecutionEnvironment env) { DataStreamSourcedata = env.addSource(new JavaCustomParallelSourceFunction()); data.setParallelism(1).map(new MapFunction () { @Override public Long map(Long value) throws Exception { System.out.println("received:"+value); return value; } }).filter(new FilterFunction () { @Override public boolean filter(Long value) throws Exception { return value % 2==0; } }).print().setParallelism(1); }
需要先使用data.setParallelism(1)然后再进行map操作,否则会输出多次。因为我们用的是JavaCustomParallelSourceFunction(),而当我们使用JavaCustomNonParallelSourceFunction时,默认就是并行度1,可以不用设置。
Union Function
Scala
def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment // filterFunction(env) unionFunction(env) env.execute("DataStreamTransformationApp") } def unionFunction(env: StreamExecutionEnvironment): Unit = { val data01 = env.addSource(new CustomNonParallelSourceFunction) val data02 = env.addSource(new CustomNonParallelSourceFunction) data01.union(data02).print().setParallelism(1) }
Union操作将两个数据集综合起来,可以一同处理,上面打印输出如下:
1 1 2 2 3 3 4 4
Java
public static void main(String[] args) throws Exception { StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); // filterFunction(environment); unionFunction(environment); environment.execute("JavaDataStreamTransformationApp"); } public static void unionFunction(StreamExecutionEnvironment env) { DataStreamSourcedata1 = env.addSource(new JavaCustomNonParallelSourceFunction()); DataStreamSource data2 = env.addSource(new JavaCustomNonParallelSourceFunction()); data1.union(data2).print().setParallelism(1); }
Split Select Function
Scala
split可以将一个流拆成多个流,select可以从多个流中进行选择处理的流。
def splitSelectFunction(env: StreamExecutionEnvironment): Unit = { val data = env.addSource(new CustomNonParallelSourceFunction) val split = data.split(new OutputSelector[Long] { override def select(value: Long): lang.Iterable[String] = { val list = new util.ArrayList[String]() if (value % 2 == 0) { list.add("even") } else { list.add("odd") } list } }) split.select("odd","even").print().setParallelism(1) }
可以根据选择的名称来处理数据。
Java
public static void splitSelectFunction(StreamExecutionEnvironment env) { DataStreamSourcedata = env.addSource(new JavaCustomNonParallelSourceFunction()); SplitStream split = data.split(new OutputSelector () { @Override public Iterable select(Long value) { List output = new ArrayList<>(); if (value % 2 == 0) { output.add("odd"); } else { output.add("even"); } return output; } }); split.select("odd").print().setParallelism(1); }
以上就是如何实现Apache Flink中Flink数据流转换,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。
网页题目:如何实现ApacheFlink中Flink数据流转换
URL标题:http://ybzwz.com/article/ghhhog.html