1分钟搞定MyISAM与InnoDB的索引差异

B+树,它是一种非常适合用来做数据库索引的数据结构:

创新互联,是成都地区的互联网解决方案提供商,用心服务为企业提供网站建设、成都app软件开发公司小程序开发、系统专业公司和微信代运营服务。经过数十余年的沉淀与积累,沉淀的是技术和服务,让客户少走弯路,踏实做事,诚实做人,用情服务,致力做一个负责任、受尊敬的企业。对客户负责,就是对自己负责,对企业负责。

(1)很适合磁盘存储,能够充分利用局部性原理,磁盘预读;

(2)很低的树高度,能够存储大量数据;

(3)索引本身占用的内存很小;

(4)能够很好的支持单点查询,范围查询,有序性查询;

 

数据库的索引分为主键索引(Primary Inkex)与普通索引(Secondary Index)。InnoDB和MyISAM是怎么利用B+树来实现这两类索引,其又有什么差异呢?这是今天要聊的内容。

 

一,MyISAM的索引

MyISAM的索引与行记录是分开存储的,叫做非聚集索引(UnClustered Index)。

 

其主键索引与普通索引没有本质差异:

有连续聚集的区域单独存储行记录

主键索引的叶子节点,存储主键,与对应行记录的指针

普通索引的叶子结点,存储索引列,与对应行记录的指针

画外音:MyISAM的表可以没有主键。

 

主键索引与普通索引是两棵独立的索引B+树,通过索引列查找时,先定位到B+树的叶子节点,再通过指针定位到行记录。

 

举个例子,MyISAM:

t(id PK, name KEY, sex, flag);

 

表中有四条记录:

1, shenjian, m, A

3, zhangsan, m, A

5, lisi, m, A

9, wangwu, f, B
1分钟搞定 MyISAM与InnoDB的索引差异
 

其B+树索引构造如上图:

行记录单独存储

id为PK,有一棵id的索引树,叶子指向行记录

name为KEY,有一棵name的索引树,叶子也指向行记录

 

二、InnoDB的索引

InnoDB的主键索引与行记录是存储在一起的,故叫做聚集索引(Clustered Index):

没有单独区域存储行记录

主键索引的叶子节点,存储主键,与对应行记录(而不是指针)

画外音:因此,InnoDB的PK查询是非常快的。

 

因为这个特性,InnoDB的表必须要有聚集索引:

(1)如果表定义了PK,则PK就是聚集索引;

(2)如果表没有定义PK,则第一个非空unique列是聚集索引;

(3)否则,InnoDB会创建一个隐藏的row-id作为聚集索引;

 

聚集索引,也只能够有一个,因为数据行在物理磁盘上只能有一份聚集存储。

 

InnoDB的普通索引可以有多个,它与聚集索引是不同的:

普通索引的叶子节点,存储主键(也不是指针)

 

对于InnoDB表,这里的启示是:

(1)不建议使用较长的列做主键,例如char(64),因为所有的普通索引都会存储主键,会导致普通索引过于庞大;

(2)建议使用趋势递增的key做主键,由于数据行与索引一体,这样不至于插入记录时,有大量索引分裂,行记录移动;

 

仍是上面的例子,只是存储引擎换成InnoDB:

t(id PK, name KEY, sex, flag);

 

表中还是四条记录:

1, shenjian, m, A

3, zhangsan, m, A

5, lisi, m, A

9, wangwu, f, B
1分钟搞定 MyISAM与InnoDB的索引差异

其B+树索引构造如上图:

id为PK,行记录和id索引树存储在一起

name为KEY,有一棵name的索引树,叶子存储id

 

当:

select * from t where name=‘lisi’;

1分钟搞定 MyISAM与InnoDB的索引差异

会先通过name辅助索引定位到B+树的叶子节点得到id=5,再通过聚集索引定位到行记录。

画外音:所以,其实扫了2遍索引树。


本文名称:1分钟搞定MyISAM与InnoDB的索引差异
链接地址:http://ybzwz.com/article/geescp.html