go语言的图算法,go语言绘图

你也可以算出圆周率的 - 随机落点算法 - 致即将到来的圆周率日

一年一度的圆周率日就要到了,是的,就是3月14日,因为它与圆周率π的前几位3.14的数字一样。

成都创新互联是一家专业提供花溪企业网站建设,专注与做网站、网站设计、H5建站、小程序制作等业务。10年已为花溪众多企业、政府机构等服务。创新互联专业网站设计公司优惠进行中。

我们知道,传说中祖冲之计算圆周率用的是“割圆术”的改进方法,可惜我们大多数现代人的脑子已经无法理解这种方法了。使用其他的复杂公式也有,但人的脑子更不容易理解,但有一个异想天开的方法你知道吗?任何人可以简单地去计算出Pi呢(下面我们都用Pi来代替圆周率π吧,好写好认,:p)。

这个方法源自概率论的基础,叫做蒙特卡洛法,形象一点的话我们也可以把它称为随机落点法,我们先说说它的原理:

我们先看看下面这张图

假设有图中的一个正方形和一个刚好套在它中间的圆形,可以很直观地看出:圆形的半径如果是R的话,正方形的边长就是2R。

圆形的面积根据公式是Pi乘以R的平方,也就是 Pi × R × R = PiR²

正方形的面积根据公式是边长的平方,也就是(2R)×(2R)= 4R²

把两个式子相除一下,可以很容易地推算出来,Pi = (圆形的面积 ÷ 正方形的面积)× 4

这样,就巧妙地把计算Pi值的问题转换成计算符合上面图中条件的圆形与正方形的面积之比的计算了。

这时候,概率论可以出场发挥作用了,以及有了计算机之后,我们有的“随机数”这个武器!

假设我们随机在正方形范围内画一个点,那么这个点有可能落在圆形之中,也有可能落在圆形之外;然后我们重复这个动作,从概率论上来说,如果进行无限多次,那么落在圆形中的点的个数与所有已经画的点的个数之比,就应该是圆形的面积和正方形的面积之比。看看下面这张图是不是就好理解了?

想想当里面的点数足够多的时候,就可以覆盖满整个原型和正方形。俗话说:“以点带面”,这时候就可以理解成无数多的点组成了圆形和正方形的面积。

好了,那么下面我们看看用计算机程序来实现这种方法计算圆周率的效果吧!我们这次选用Go语言(Golang)来实现这个算法,因为Go语言相对速度较快(比Python和Java等解释型语言要快得多),编写起来又比C语言更容易看懂。

这段程序的运行结果是:

可以看出来,计算出来的圆周率Pi值越来越接近于我们所熟知的数字:3.1415……

神奇吧,为什么说人也可以算出来呢?假想在地上用粉笔画一个那样的正方形和圆形,然后我们随性地往里扔沙包吧!很童真的画面吧?

【golang详解】go语言GMP(GPM)原理和调度

Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。

首先介绍一下GMP什么意思:

G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。

M ---------- thread内核级线程,所有的G都要放在M上才能运行。

P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。

Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行

模型图:

避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing机制

当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。

2)hand off机制

当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:

如果有空闲的P,则获取一个P,继续执行G0。

如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。

如下图

GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行

在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。

具体可以去看另一篇文章

【Golang详解】go语言调度机制 抢占式调度

当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。

协程经历过程

我们创建一个协程 go func()经历过程如下图:

说明:

这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。

G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;

一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G

上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。

work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。

如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。

Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:

用户态阻塞/唤醒

当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。

系统调用阻塞

当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。

队列轮转

可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

M0

M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了

G0

G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0

一个G由于调度被中断,此后如何恢复?

中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。

我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码

参考: ()

()

Go语言 排序与搜索切片

Go语言标准库中提供了sort包对整型,浮点型,字符串型切片进行排序,检查一个切片是否排好序,使用二分法搜索函数在一个有序切片中搜索一个元素等功能。

关于sort包内的函数说明与使用,请查看

在这里简单讲几个sort包中常用的函数

在Go语言中,对字符串的排序都是按照字节排序,也就是说在对字符串排序时是区分大小写的。

二分搜索算法

Go语言中提供了一个使用二分搜索算法的sort.Search(size,fn)方法:每次只需要比较㏒₂n个元素,其中n为切片中元素的总数。

sort.Search(size,fn)函数接受两个参数:所处理的切片的长度和一个将目标元素与有序切片的元素相比较的函数,该函数是一个闭包,如果该有序切片是升序排列,那么在判断时使用 有序切片的元素 = 目标元素。该函数返回一个int值,表示与目标元素相同的切片元素的索引。

在切片中查找出某个与目标字符串相同的元素索引


分享名称:go语言的图算法,go语言绘图
浏览地址:http://ybzwz.com/article/dsiecih.html