nosql数据库base,nosql数据库base特性是指

nosql数据库的四种类型

nosql数据库的四种类型如下:

柴桑ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!

1.key-value键值存储数据库:

相关产品: Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached.

主要应用: 内容缓存,处理大量数据的高负载访问,也用于系统日志。

优点:查找速度快,大量操作时性能高。

2.列存储数据库:

相关产品: BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS.

主要应用: 分布式数据的储存与管理。

优点:查找速度快,可扩展性强,容易进行分布式扩展。

缺点:功能相对局限。

3.文档型数据库

相关产品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit.

主要应用: web应用,管理面向文档的数据或者类似的半结构化数据。

优点:数据结构灵活,表结构可变,复杂性低。

缺点:查询效率低,且缺乏统一的查询语言。

4.Graph图形数据库

相关产品: Neo4J、OrientDB、InfoGrid、GraphDB.

主要应用: 复杂,互连接,低结构化的图结构场合, 专注构建关系图谱。

优点: 利用图结构相关算法, 可用于构建复杂的关系图谱。

缺点: 复杂度高。

什么是NoSQL数据库?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,

泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。

(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 关系型数据库与NoSQL的区别?

3.1 RDBMS

高度组织化结构化数据

结构化查询语言(SQL)

数据和关系都存储在单独的表中。

数据操纵语言,数据定义语言

严格的一致性

基础事务

ACID

关系型数据库遵循ACID规则

事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:

A (Atomicity) 原子性

原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。

C (Consistency) 一致性

一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。

I (Isolation) 独立性

所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。

3.2 NoSQL

代表着不仅仅是SQL

没有声明性查询语言

没有预定义的模式

键 - 值对存储,列存储,文档存储,图形数据库

最终一致性,而非ACID属性

非结构化和不可预知的数据

CAP定理

高性能,高可用性和可伸缩性

分布式数据库中的CAP原理(了解)

CAP定理:

Consistency(一致性), 数据一致更新,所有数据变动都是同步的

Availability(可用性), 好的响应性能

Partition tolerance(分区容错性) 可靠性

P: 系统中任意信息的丢失或失败不会影响系统的继续运作。

定理:任何分布式系统只可同时满足二点,没法三者兼顾。

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,

因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:

CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。

CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。

AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。

而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。

所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。

说明:C:强一致性 A:高可用性 P:分布式容忍性

举例:

CA:传统Oracle数据库

AP:大多数网站架构的选择

CP:Redis、Mongodb

注意:分布式架构的时候必须做出取舍。

一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。

因此牺牲C换取P,这是目前分布式数据库产品的方向。

4. 当下NoSQL的经典应用

当下的应用是 SQL 与 NoSQL 一起使用的。

代表项目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。

难点:

数据类型多样性。

数据源多样性和变化重构。

数据源改造而服务平台不需要大面积重构。

HBase是什么呢,都有哪些特点呢?

Hbase是一种NoSQL数据库,这意味着它不像传统的RDBMS数据库那样支持SQL作为查询语言。Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等待

那Hbase有什么特性呢?如下:

强读写一致,但是不是“最终一致性”的数据存储,这使得它非常适合高速的计算聚合

自动分片,通过Region分散在集群中,当行数增长的时候,Region也会自动的切分和再分配

自动的故障转移

Hadoop/HDFS集成,和HDFS开箱即用,不用太麻烦的衔接

丰富的“简洁,高效”API,Thrift/REST API,Java API

块缓存,布隆过滤器,可以高效的列查询优化

操作管理,Hbase提供了内置的web界面来操作,还可以监控JMX指标

什么时候用Hbase?

Hbase不适合解决所有的问题:

首先数据库量要足够多,如果有十亿及百亿行数据,那么Hbase是一个很好的选项,如果只有几百万行甚至不到的数据量,RDBMS是一个很好的选择。因为数据量小的话,真正能工作的机器量少,剩余的机器都处于空闲的状态

其次,如果你不需要辅助索引,静态类型的列,事务等特性,一个已经用RDBMS的系统想要切换到Hbase,则需要重新设计系统。

最后,保证硬件资源足够,每个HDFS集群在少于5个节点的时候,都不能表现的很好。因为HDFS默认的复制数量是3,再加上一个NameNode。

Hbase在单机环境也能运行,但是请在开发环境的时候使用。

内部应用

存储业务数据:车辆GPS信息,司机点位信息,用户操作信息,设备访问信息。。。

存储日志数据:架构监控数据(登录日志,中间件访问日志,推送日志,短信邮件发送记录。。。),业务操作日志信息

存储业务附件:UDFS系统存储图像,视频,文档等附件信息

不过在公司使用的时候,一般不使用原生的Hbase API,使用原生的API会导致访问不可监控,影响系统稳定性,以致于版本升级的不可控。

HFile

HFile是Hbase在HDFS中存储数据的格式,它包含多层的索引,这样在Hbase检索数据的时候就不用完全的加载整个文件。索引的大小(keys的大小,数据量的大小)影响block的大小,在大数据集的情况下,block的大小设置为每个RegionServer 1GB也是常见的。

探讨数据库的数据存储方式,其实就是探讨数据如何在磁盘上进行有效的组织。因为我们通常以如何高效读取和消费数据为目的,而不是数据存储本身。

Hfile生成方式

起初,HFile中并没有任何Block,数据还存在于MemStore中。

Flush发生时,创建HFile Writer,第一个空的Data Block出现,初始化后的Data Block中为Header部分预留了空间,Header部分用来存放一个Data Block的元数据信息。

而后,位于MemStore中的KeyValues被一个个append到位于内存中的第一个Data Block中:

注:如果配置了Data Block Encoding,则会在Append KeyValue的时候进行同步编码,编码后的数据不再是单纯的KeyValue模式。Data Block Encoding是HBase为了降低KeyValue结构性膨胀而提供的内部编码机制。

一、NoSQL数据库简介

Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。

随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。

NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。

Memcache Memcache Redis Redis MongoDB MongoDB 列式数据库 列式数据库 Hbase Hbase

HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。

HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10亿行数据,还可处理有数百万列元素的数据表。

Cassandra Cassandra

Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。

主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)


分享标题:nosql数据库base,nosql数据库base特性是指
URL分享:http://ybzwz.com/article/dsgjhoj.html