sqoopnosql的简单介绍
大数据的核心技术有哪些
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。
成都创新互联公司网站建设服务商,为中小企业提供成都网站建设、成都网站制作服务,网站设计,网站托管维护等一站式综合服务型公司,专业打造企业形象网站,让您在众多竞争对手中脱颖而出成都创新互联公司。
1、数据采集与预处理:FlumeNG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。
2、数据存储:Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。
3、数据清洗:MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算。
4、数据查询分析:Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供HQL(HiveSQL)查询功能。Spark启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。
大数据技术要掌握的要点有哪些?
Zookeeper:安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。需要把它安装正确 ,让它正常的跑起来。
Mysql:在Linux上把它安装好,运行起来,会配置简单的权限,修改root密码,创建数据库。
Sqoop:这个是用于把Mysal里面的数据导入Hadoop里面。
Hive:和Pig同理,想要变得厉害可以都学习。
Oozie:可以帮你管理你的Hive或者MapReduce、Spark脚本还能检查你的程序执行的是否正确。
Hbase:这个是Hadoop生态体系中的NOSQL数据库,是按照key和value的形式存储的并且key是唯一的。所以可以帮你做数据排重,它与MYSQL相比存储的数据量大。
Kafka:这个是队列工具。可以利用它来做线上实时数据的入库或者是入HDFS,与Flume的工具配合使用,专门用来提供对数据进行简单处理。
Spark:这个工具是用来弥补MapReduce处理数据速度上的缺点,特点就是把数据装载到内存里面去计算。适合做迭代运算,Java语言或者Scala都可以操作它,他们都是用JVM的。
关于大数据技术要掌握的要点有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
大数据技术有哪些
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿
零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。
二、大数据预处理技术
主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。
开发大数据安全技术。改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。
四、大数据分析及挖掘技术
大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。
从挖掘任务和挖掘方法的角度,着重突破:
1.可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。
2.数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。
3.预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。
4.语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。
5.数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。
六、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。
大数据专业主要学习什么语言?
大数据是近五年兴起的行业,发展迅速,很多技术经过这些年的迭代也变得比较成熟了,同时新的东西也不断涌现,想要保持自己竞争力的唯一办法就是不断学习。但是,大数据需要学习什么?1 思维导图下面的是我之前整理的一张思维导图,内容分成几大块,包括了分布式计算与查询,分布式调度与管理,持久化存储,大数据常用的编程语言等等内容,每个大类下有很多的开源工具。2大数据需要的语言Javajava可以说是大数据最基础的编程语言,据我这些年的经验,我接触的很大一部分的大数据开发都是从Jave Web开发转岗过来的(当然也不是绝对我甚至见过产品转岗大数据开发的,逆了个天)。一是因为大数据的本质无非就是海量数据的计算,查询与存储,后台开发很容易接触到大数据量存取的应用场景二就是java语言本事了,天然的优势,因为大数据的组件很多都是用java开发的像HDFS,Yarn,Hbase,MR,Zookeeper等等,想要深入学习,填上生产环境中踩到的各种坑,必须得先学会java然后去啃源码。说到啃源码顺便说一句,开始的时候肯定是会很难,需要对组件本身和开发语言都有比较深入的理解,熟能生巧慢慢来,等你过了这个阶段,习惯了看源码解决问题的时候你会发现源码真香。Scalascala和java很相似都是在jvm运行的语言,在开发过程中是可以无缝互相调用的。Scala在大数据领域的影响力大部分都是来自社区中的明星Spark和kafka,这两个东西大家应该都知道(后面我会有文章多维度介绍它们),它们的强势发展直接带动了Scala在这个领域的流行。Python和Shellshell应该不用过多的介绍非常的常用,属于程序猿必备的通用技能。python更多的是用在数据挖掘领域以及写一些复杂的且shell难以实现的日常脚本。3分布式计算什么是分布式计算?分布式计算研究的是如何把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多服务器进行处理,最后把这些计算结果综合起来得到最终的结果。举个栗子,就像是组长把一个大项目拆分,让组员每个人开发一部分,最后将所有人代码merge,大项目完成。听起来好像很简单,但是真正参与过大项目开发的人一定知道中间涉及的内容可不少。分布式计算目前流行的工具有:离线工具Spark,MapReduce等实时工具Spark Streaming,Storm,Flink等这几个东西的区别和各自的应用场景我们之后再聊。4分布式存储传统的网络存储系统采用的是集中的存储服务器存放所有数据,单台存储服务器的io能力是有限的,这成为了系统性能的瓶颈,同时服务器的可靠性和安全性也不能满足需求,尤其是大规模的存储应用。分布式存储系统,是将数据分散存储在多台独立的设备上。采用的是可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。上图是hdfs的存储架构图,hdfs作为分布式文件系统,兼备了可靠性和扩展性,数据存储3份在不同机器上(两份存在同一机架,一份存在其他机架)保证数据不丢失。由NameNode统一管理元数据,可以任意扩展集群。主流的分布式数据库有很多hbase,mongoDB,GreenPlum,redis等等等等,没有孰好孰坏之分,只有合不合适,每个数据库的应用场景都不同,其实直接比较是没有意义的,后续我也会有文章一个个讲解它们的应用场景原理架构等。5分布式调度与管理现在人们好像都很热衷于谈"去中心化",也许是区块链带起的这个潮流。但是"中心化"在大数据领域还是很重要的,至少目前来说是的。分布式的集群管理需要有个组件去分配调度资源给各个节点,这个东西叫yarn;需要有个组件来解决在分布式环境下"锁"的问题,这个东西叫zookeeper;需要有个组件来记录任务的依赖关系并定时调度任务,这个东西叫azkaban。当然这些“东西”并不是唯一的,其实都是有很多替代品的,本文只举了几个比较常用的例子。
数据仓库数据建模的几种思路
数据仓库数据建模的几种思路主要分为一下几种
1. 星型模式
星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。星形模式的维度建模由一个事实表和一组维表成,且具有以下特点:a. 维表只和事实表关联,维表之间没有关联;b. 每个维表主键为单列,且该主键放置在事实表中,作为两边连接的外键;c. 以事实表为核心,维表围绕核心呈星形分布;
2. 雪花模式
雪花模式(Snowflake Schema)是对星形模式的扩展。雪花模式的维度表可以拥有其他维度表的,虽然这种模型相比星型更规范一些,但是由于这种模型不太容易理解,维护成本比较高,而且性能方面需要关联多层维表,性能也比星型模型要低。所以一般不是很常用
雪花模式
3.星座模式
星座模式是星型模式延伸而来,星型模式是基于一张事实表的,而星座模式是基于多张事实表的,而且共享维度信息。前面介绍的两种维度建模方法都是多维表对应单事实表,但在很多时候维度空间内的事实表不止一个,而一个维表也可能被多个事实表用到。在业务发展后期,绝大部分维度建模都采用的是星座模式。
星座模型
大数据都是学什么软件?
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
大数据
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
当前题目:sqoopnosql的简单介绍
本文URL:http://ybzwz.com/article/dsgcgec.html