hbasenosql的简单介绍

北大青鸟设计培训:Hbase知识点总结?

hbase概念:  非结构化的分布式的面向列存储非关系型的开源的数据库,根据谷歌的三大论文之一的bigtable  高宽厚表  作用:  为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。

我们提供的服务有:成都做网站、网站制作、微信公众号开发、网站优化、网站认证、上栗ssl等。为数千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的上栗网站制作公司

能干什么:  存储大量结果集数据,低延迟的随机查询。

sql:  结构化查询语言  nosql:  非关系型数据库,列存储和文档存储(查询低延迟),hbase是nosql的一个种类,其特点是列式存储。

非关系型数据库--列存储(hbase)  非关系型数据库--文档存储(MongoDB)  非关系型数据库--内存式存储(redis)  非关系型数据库--图形模型(graph)  hive和hbase区别?  Hive的定位是数据仓库,虽然也有增删改查,但其删改查对应的是整张表而不是单行数据,查询的延迟较高。

其本质是更加方便的使用mr的威力来进行离线分析的一个数据分析工具。

HBase的定位是hadoop的数据库,电脑培训发现是一个典型的Nosql,所以HBase是用来在大量数据中进行低延迟的随机查询的。

hbase运行方式:  standalonedistrubited  单节点和伪分布式?  单节点:单独的进程运行在同一台机器上  hbase应用场景:  存储海量数据低延迟查询数据  hbase表由多行组成  hbase行一行在hbase中由行健和一个或多个列的值组成,按行健字母顺序排序的存储。

hbase的作用

HBase 是典型的 NoSQL 数据库,通常被描述成稀疏的、分布式的、持久化的,由行键、列键和时间戳进行索引的多维有序映射数据库,主要用来存储非结构化和半结构化的数据。因为 HBase 基于 Hadoop 的 HDFS 完成分布式存储,以及 MapReduce 完成分布式并行计算,所以它的一些特点与 Hadoop 相同,依靠横向扩展,通过不断增加性价比高的商业服务器来增加计算和存储能力。

HBase 虽然基于 Bigtable 的开源实现,但它们之间还是有很多差别的,Bigtable 经常被描述成键值数据库,而 HBase 则是面向列存储的分布式数据库。

下面介绍 HBase 具备的显著特性,这些特性让 HBase 成为当前和未来最实用的数据库之一。

容量巨大

HBase 的单表可以有百亿行、百万列,可以在横向和纵向两个维度插入数据,具有很大的弹性。

当关系型数据库的单个表的记录在亿级时,查询和写入的性能都会呈现指数级下降,这种庞大的数据量对传统数据库来说是一种灾难,而 HBase 在限定某个列的情况下对于单表存储百亿甚至更多的数据都没有性能问题。

HBase 采用 LSM 树作为内部数据存储结构,这种结构会周期性地将较小文件合并成大文件,以减少对磁盘的访问。

扩展性强

HBase 工作在 HDFS 之上,理所当然地支持分布式表,也继承了 HDFS 的可扩展性。HBase 的扩展是横向的,横向扩展是指在扩展时不需要提升服务器本身的性能,只需添加服务器到现有集群即可。

HBase 表根据 Region 大小进行分区,分别存在集群中不同的节点上,当添加新的节点时,集群就重新调整,在新的节点启动 HBase 服务器,动态地实现扩展。这里需要指出,HBase 的扩展是热扩展,即在不停止现有服务的前提下,可以随时添加或者减少节点。

高可靠性

HBase 运行在 HDFS 上,HDFS 的多副本存储可以让它在岀现故障时自动恢复,同时 HBase 内部也提供 WAL 和 Replication 机制。

WAL(Write-Ahead-Log)预写日志是在 HBase 服务器处理数据插入和删除的过程中用来记录操作内容的日志,保证了数据写入时不会因集群异常而导致写入数据的丢失;而 Replication 机制是基于日志操作来做数据同步的。

什么是nosql

nosql是not only sql的意思。是近今年新发展起来的存储系统。当前使用最多的是key-value模型,用于处理超大规模的数据。

以下是摘自百度百科中的一部分

NoSQL 是非关系型数据存储的广义定义。它打破了长久以来关系型数据库与ACID理论大一统的局面。NoSQL 数据存储不需要固定的表结构,通常也不存在连接操作。在大数据存取上具备关系型数据库无法比拟的性能优势。该术语在 2009 年初得到了广泛认同。

当今的应用体系结构需要数据存储在横向伸缩性上能够满足需求。而 NoSQL 存储就是为了实现这个需求。Google 的BigTable与Amazon的Dynamo是非常成功的商业 NoSQL 实现。一些开源的 NoSQL 体系,如Facebook 的Cassandra, Apache 的HBase,也得到了广泛认同。从这些NoSQL项目的名字上看不出什么相同之处:Hadoop、Voldemort、Dynomite,还有其它很多。

NoSQL与关系型数据库设计理念比较

关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。而非关系型数据库以键值对存储,它的结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。

HBase是什么呢,都有哪些特点呢?

Hbase是一种NoSQL数据库,这意味着它不像传统的RDBMS数据库那样支持SQL作为查询语言。Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等待

那Hbase有什么特性呢?如下:

强读写一致,但是不是“最终一致性”的数据存储,这使得它非常适合高速的计算聚合

自动分片,通过Region分散在集群中,当行数增长的时候,Region也会自动的切分和再分配

自动的故障转移

Hadoop/HDFS集成,和HDFS开箱即用,不用太麻烦的衔接

丰富的“简洁,高效”API,Thrift/REST API,Java API

块缓存,布隆过滤器,可以高效的列查询优化

操作管理,Hbase提供了内置的web界面来操作,还可以监控JMX指标

什么时候用Hbase?

Hbase不适合解决所有的问题:

首先数据库量要足够多,如果有十亿及百亿行数据,那么Hbase是一个很好的选项,如果只有几百万行甚至不到的数据量,RDBMS是一个很好的选择。因为数据量小的话,真正能工作的机器量少,剩余的机器都处于空闲的状态

其次,如果你不需要辅助索引,静态类型的列,事务等特性,一个已经用RDBMS的系统想要切换到Hbase,则需要重新设计系统。

最后,保证硬件资源足够,每个HDFS集群在少于5个节点的时候,都不能表现的很好。因为HDFS默认的复制数量是3,再加上一个NameNode。

Hbase在单机环境也能运行,但是请在开发环境的时候使用。

内部应用

存储业务数据:车辆GPS信息,司机点位信息,用户操作信息,设备访问信息。。。

存储日志数据:架构监控数据(登录日志,中间件访问日志,推送日志,短信邮件发送记录。。。),业务操作日志信息

存储业务附件:UDFS系统存储图像,视频,文档等附件信息

不过在公司使用的时候,一般不使用原生的Hbase API,使用原生的API会导致访问不可监控,影响系统稳定性,以致于版本升级的不可控。

HFile

HFile是Hbase在HDFS中存储数据的格式,它包含多层的索引,这样在Hbase检索数据的时候就不用完全的加载整个文件。索引的大小(keys的大小,数据量的大小)影响block的大小,在大数据集的情况下,block的大小设置为每个RegionServer 1GB也是常见的。

探讨数据库的数据存储方式,其实就是探讨数据如何在磁盘上进行有效的组织。因为我们通常以如何高效读取和消费数据为目的,而不是数据存储本身。

Hfile生成方式

起初,HFile中并没有任何Block,数据还存在于MemStore中。

Flush发生时,创建HFile Writer,第一个空的Data Block出现,初始化后的Data Block中为Header部分预留了空间,Header部分用来存放一个Data Block的元数据信息。

而后,位于MemStore中的KeyValues被一个个append到位于内存中的第一个Data Block中:

注:如果配置了Data Block Encoding,则会在Append KeyValue的时候进行同步编码,编码后的数据不再是单纯的KeyValue模式。Data Block Encoding是HBase为了降低KeyValue结构性膨胀而提供的内部编码机制。

baseinfo在hbase中什么意思

hbase是一种Nosql的分布式数据存储系统。具有可靠性,高能性,列存储,可伸缩的征,可以对大型数据进行实时、随机的读写访问。

hbase是一个分布式的列式存储数据库 nosql的数据库,no sql hbase不支持标准sql 不支持sql语句的,基于hbase之上对外提供标准sql的组件 phoenix,ont only sql。

当数据量过于庞大的时候 数据的快速查询是很难实现的GFS-------分布式存储的MAPERREDUCE------分布式计算的BIGTABLE------分布式数据库 快速查询。


本文名称:hbasenosql的简单介绍
URL分享:http://ybzwz.com/article/dsescgp.html