包含postgresql难用的词条
无任何数据库基础,PostgreSQL数据库难学吗?
应该比mysql好学,文档做得比较好.有中文文档,自己去搜一下.csdn上面就有.自己可视化工具.例子也比较简单易懂.不用ms sql server的话,这个应该算是最好学的了.而且功能也很强大的.号称最强的开源数据库.
创新互联公司2013年成立,是专业互联网技术服务公司,拥有项目成都网站制作、网站设计网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元西青做网站,已为上家服务,为西青各地企业和个人服务,联系电话:18982081108
hibernate 连接postgresql数据库存储对象出错
postgresQL你要看看是否支持uuid,如果不支持,你就手动生成,应该是主键的事
为什么 PostgreSQL 没有 MySQL 流行
1、MySQL崛起那会,PG虽然已经有许多高级特性,但那些特性互联网用不着,互联网需要的特性——快速——那时的PG不具备。历史延续下来,造成了今天的局面。可以说互联网成就了MySQL.
2、MySQL的主从复制、增量备份比PG设置简单(知道PG的增量备份多耗磁盘不!),这些特性在互联网是很有用的。而旧的pg vacuum不如今天的友好。这些都限制了他在早期的崛起。
3、不认为商业支持是主要原因——有几个用MySQL的是买了商业支持的?倒是有些心理上的影响。
4、今天两者性能、特性上相差不多,而我认为pg略胜一筹,但大局在适时间内难改变——习惯造成的。
postgresql 建立索引
一、索引的类型:
PostgreSQL提供了多种索引类型:B-Tree、Hash、GiST和GIN,由于它们使用了不同的算法,因此每种索引类型都有其适合的查询类型,缺省时,CREATE INDEX命令将创建B-Tree索引。
1. B-Tree:
CREATE TABLE test1 (
id integer,
content varchar
);
CREATE INDEX test1_id_index ON test1 (id);
B-Tree索引主要用于等于和范围查询,特别是当索引列包含操作符" 、=和"作为查询条件时,PostgreSQL的查询规划器都会考虑使用B-Tree索引。在使用BETWEEN、IN、IS NULL和IS NOT NULL的查询中,PostgreSQL也可以使用B-Tree索引。然而对于基于模式匹配操作符的查询,如LIKE、ILIKE、~和 ~*,仅当模式存在一个常量,且该常量位于模式字符串的开头时,如col LIKE 'foo%'或col ~ '^foo',索引才会生效,否则将会执行全表扫描,如:col LIKE '%bar'。
2. Hash:
CREATE INDEX name ON table USING hash (column);
散列(Hash)索引只能处理简单的等于比较。当索引列使用等于操作符进行比较时,查询规划器会考虑使用散列索引。
这里需要额外说明的是,PostgreSQL散列索引的性能不比B-Tree索引强,但是散列索引的尺寸和构造时间则更差。另外,由于散列索引操作目前没有记录WAL日志,因此一旦发生了数据库崩溃,我们将不得不用REINDEX重建散列索引。
3. GiST:
GiST索引不是一种单独的索引类型,而是一种架构,可以在该架构上实现很多不同的索引策略。从而可以使GiST索引根据不同的索引策略,而使用特定的操作符类型。
4. GIN:
GIN索引是反转索引,它可以处理包含多个键的值(比如数组)。与GiST类似,GIN同样支持用户定义的索引策略,从而可以使GIN索引根据不同的索引策略,而使用特定的操作符类型。作为示例,PostgreSQL的标准发布中包含了用于一维数组的GIN操作符类型,如:、=、等。
二、复合索引:
PostgreSQL中的索引可以定义在数据表的多个字段上,如:
CREATE TABLE test2 (
major int,
minor int,
name varchar
}
CREATE INDEX test2_mm_idx ON test2 (major, minor);
1. B-Tree类型的复合索引:
在B-Tree类型的复合索引中,该索引字段的任意子集均可用于查询条件,不过,只有当复合索引中的第一个索引字段(最左边)被包含其中时,才可以获得最高效率。
2. GiST类型的复合索引:
在GiST类型的复合索引中,只有当第一个索引字段被包含在查询条件中时,才能决定该查询会扫描多少索引数据,而其他索引字段上的条件只是会限制索引返回的条目。假如第一个索引字段上的大多数数据都有相同的键值,那么此时应用GiST索引就会比较低效。
3. GIN类型的复合索引:
与B-Tree和GiST索引不同的是,GIN复合索引不会受到查询条件中使用了哪些索引字段子集的影响,无论是哪种组合,都会得到相同的效率。
使用复合索引应该谨慎。在大多数情况下,单一字段上的索引就已经足够了,并且还节约时间和空间。除非表的使用模式非常固定,否则超过三个字段的索引几乎没什么用处。
三、组合多个索引:
PostgreSQL可以在查询时组合多个索引(包括同一索引的多次使用),来处理单个索引扫描不能实现的场合。与此同时,系统还可以在多个索引扫描之间组成AND和OR的条件。比如,一个类似WHERE x = 42 OR x = 47 OR x = 53 OR x = 99的查询,可以被分解成四个独立的基于x字段索引的扫描,每个扫描使用一个查询子句,之后再将这些扫描结果OR在一起并生成最终的结果。另外一个例子是,如果我们在x和y上分别存在独立的索引,那么一个类似WHERE x = 5 AND y = 6的查询,就会分别基于这两个字段的索引进行扫描,之后再将各自扫描的结果进行AND操作并生成最终的结果行。
为了组合多个索引,系统扫描每个需要的索引,然后在内存里组织一个BITMAP,它将给出索引扫描出的数据在数据表中的物理位置。然后,再根据查询的需要,把这些位图进行AND或者OR的操作并得出最终的BITMAP。最后,检索数据表并返回数据行。表的数据行是按照物理顺序进行访问的,因为这是位图的布局,这就意味着任何原来的索引的排序都将消失。如果查询中有ORDER BY子句,那么还将会有一个额外的排序步骤。因为这个原因,以及每个额外的索引扫描都会增加额外的时间,这样规划器有时候就会选择使用简单的索引扫描,即使有多个索引可用也会如此。
四、唯一索引:
CREATE UNIQUE INDEX name ON table (column [, ...]);
五、表达式索引:
表达式索引主要用于在查询条件中存在基于某个字段的函数或表达式的结果与其他值进行比较的情况,如:
SELECT * FROM test1 WHERE lower(col1) = 'value';
此时,如果我们仅仅是在col1字段上建立索引,那么该查询在执行时一定不会使用该索引,而是直接进行全表扫描。如果该表的数据量较大,那么执行该查询也将会需要很长时间。解决该问题的办法非常简单,在test1表上建立基于col1字段的表达式索引,如:
CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));
SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith';
和上面的例子一样,尽管我们可能会为first_name和last_name分别创建独立索引,或者是基于这两个字段的复合索引,在执行该查询语句时,这些索引均不会被使用,该查询能够使用的索引只有我们下面创建的表达式索引。
CREATE INDEX people_names ON people ((first_name || ' ' || last_name));
CREATE INDEX命令的语法通常要求在索引表达式周围书写圆括弧,就像我们在第二个例子里显示的那样。如果表达式只是一个函数调用,那么可以省略,就像我们在第一个例子里显示的那样。
从索引维护的角度来看,索引表达式要相对低效一些,因为在插入数据或者更新数据的时候,都必须为该行计算表达式的结果,并将该结果直接存储到索引里。然而在查询时,PostgreSQL就会把它们看做WHERE idxcol = 'constant',因此搜索的速度等效于基于简单索引的查询。通常而言,我们只是应该在检索速度比插入和更新速度更重要的场景下使用表达式索引。
六、部分索引:
部分索引(partial index)是建立在一个表的子集上的索引,而该子集是由一个条件表达式定义的(叫做部分索引的谓词)。该索引只包含表中那些满足这个谓词的行。
由于不是在所有的情况下都需要更新索引,因此部分索引会提高数据插入和数据更新的效率。然而又因为部分索引比普通索引要小,因此可以更好的提高确实需要索引部分的查询效率。见以下三个示例:
1. 索引字段和谓词条件字段一致:
CREATE INDEX access_log_client_ip_ix ON access_log(client_ip)
WHERE NOT (client_ip inet '192.168.100.0' AND client_ip inet '192.168.100.255');
下面的查询将会用到该部分索引:
SELECT * FROM access_log WHERE url = '/index.html' AND client_ip = inet '212.78.10.32';
下面的查询将不会用该部分索引:
一个不能使用这个索引的查询可以是
SELECT * FROM access_log WHERE client_ip = inet '192.168.100.23';
2. 索引字段和谓词条件字段不一致:
PostgreSQL支持带任意谓词的部分索引,唯一的约束是谓词的字段也要来自于同样的数据表。注意,如果你希望你的查询语句能够用到部分索引,那么就要求该查询语句的条件部分必须和部分索引的谓词完全匹配。 准确说,只有在PostgreSQL能够识别出该查询的WHERE条件在数学上涵盖了该索引的谓词时,这个部分索引才能被用于该查询。
CREATE INDEX orders_unbilled_index ON orders(order_nr) WHERE billed is not true;
下面的查询一定会用到该部分索引:
SELECT * FROM orders WHERE billed is not true AND order_nr 10000;
那么对于如下查询呢?
SELECT * FROM orders WHERE billed is not true AND amount 5000.00;
这个查询将不像上面那个查询这么高效,毕竟查询的条件语句中没有用到索引字段,然而查询条件"billed is not true"却和部分索引的谓词完全匹配,因此PostgreSQL将扫描整个索引。这样只有在索引数据相对较少的情况下,该查询才能更有效一些。
下面的查询将不会用到部分索引。
SELECT * FROM orders WHERE order_nr = 3501;
3. 数据表子集的唯一性约束:
CREATE TABLE tests (
subject text,
target text,
success boolean,
...
);
CREATE UNIQUE INDEX tests_success_constraint ON tests(subject, target) WHERE success;
该部分索引将只会对success字段值为true的数据进行唯一性约束。在实际的应用中,如果成功的数据较少,而不成功的数据较多时,该实现方法将会非常高效。
七、检查索引的使用:
见以下四条建议:
1. 总是先运行ANALYZE。
该命令将会收集表中数值分布状况的统计。在估算一个查询返回的行数时需要这个信息,而规划器则需要这个行数以便给每个可能的查询规划赋予真实的开销值。如果缺乏任何真实的统计信息,那么就会使用一些缺省数值,这样肯定是不准确的。因此,如果还没有运行ANALYZE就检查一个索引的使用状况,那将会是一次失败的检查。
2. 使用真实的数据做实验。
用测试数据填充数据表,那么该表的索引将只会基于测试数据来评估该如何使用索引,而不是对所有的数据都如此使用。比如从100000行中选1000行,规划器可能会考虑使用索引,那么如果从100行中选1行就很难说也会使用索引了。因为100行的数据很可能是存储在一个磁盘页面中,然而没有任何查询规划能比通过顺序访问一个磁盘页面更加高效了。与此同时,在模拟测试数据时也要注意,如果这些数据是非常相似的数据、完全随机的数据,或按照排序顺序插入的数据,都会令统计信息偏离实际数据应该具有的特征。
3. 如果索引没有得到使用,那么在测试中强制它的使用也许会有些价值。有一些运行时参数可以关闭各种各样的查询规划。
4. 强制使用索引用法将会导致两种可能:一是系统选择是正确的,使用索引实际上并不合适,二是查询计划的开销计算并不能反映现实情况。这样你就应该对使用和不使用索引的查询进行计时,这个时候EXPLAIN ANALYZE命令就很有用了。
为什么postgrelsql的性能没有mysql好
一、 PostgreSQL 的稳定性极强, Innodb 等引擎在崩溃、断电之类的灾难场景下抗打击能力有了长足进步,然而很多 MySQL 用户都遇到过Server级的数据库丢失的场景——mysql系统库是MyISAM的,相比之下,PG数据库这方面要好一些。
二、任何系统都有它的性能极限,在高并发读写,负载逼近极限下,PG的性能指标仍可以维持双曲线甚至对数曲线,到顶峰之后不再下降,而 MySQL 明显出现一个波峰后下滑(5.5版本之后,在企业级版本中有个插件可以改善很多,不过需要付费)。
三、PG 多年来在 GIS 领域处于优势地位,因为它有丰富的几何类型,实际上不止几何类型,PG有大量字典、数组、bitmap 等数据类型,相比之下mysql就差很多,instagram就是因为PG的空间数据库扩展POSTGIS远远强于MYSQL的my spatial而采用PGSQL的。
四、PG 的“无锁定”特性非常突出,甚至包括 vacuum 这样的整理数据空间的操作,这个和PGSQL的MVCC实现有关系。
五、PG 的可以使用函数和条件索引,这使得PG数据库的调优非常灵活,mysql就没有这个功能,条件索引在web应用中很重要。
六、PG有极其强悍的 SQL 编程能力(9.x 图灵完备,支持递归!),有非常丰富的统计函数和统计语法支持,比如分析函数(ORACLE的叫法,PG里叫window函数),还可以用多种语言来写存储过程,对于R的支持也很好。这一点上MYSQL就差的很远,很多分析功能都不支持,腾讯内部数据存储主要是MYSQL,但是数据分析主要是HADOOP+PGSQL。
七、PG 的有多种集群架构可以选择,plproxy 可以支持语句级的镜像或分片,slony 可以进行字段级的同步设置,standby 可以构建WAL文件级或流式的读写分离集群,同步频率和集群策略调整方便,操作非常简单。
八、一般关系型数据库的字符串有限定长度8k左右,无限长 TEXT 类型的功能受限,只能作为外部大数据访问。而 PG 的 TEXT 类型可以直接访问,SQL语法内置正则表达式,可以索引,还可以全文检索,或使用xml xpath。用PG的话,文档数据库都可以省了。
九,对于WEB应用来说,复制的特性很重要,mysql到现在也是异步复制,pgsql可以做到同步,异步,半同步复制。还有mysql的同步是基于binlog复制,类似oracle golden gate,是基于stream的复制,做到同步很困难,这种方式更加适合异地复制,pgsql的复制基于wal,可以做到同步复制。同时,pgsql还提供stream复制。
十,pgsql对于numa架构的支持比mysql强一些,比MYSQL对于读的性能更好一些,pgsql提交可以完全异步,而mysql的内存表不够实用(因为表锁的原因)
最后说一下我感觉 PG 不如 MySQL 的地方。
第一,MySQL有一些实用的运维支持,如 slow-query.log ,这个pg肯定可以定制出来,但是如果可以配置使用就更好了。
第二是mysql的innodb引擎,可以充分优化利用系统所有内存,超大内存下PG对内存使用的不那么充分,
第三点,MySQL的复制可以用多级从库,但是在9.2之前,PGSQL不能用从库带从库。
第四点,从测试结果上看,mysql 5.5的性能提升很大,单机性能强于pgsql,5.6应该会强更多.
第五点,对于web应用来说,mysql 5.6 的内置MC API功能很好用,PGSQL差一些。
另外一些:
pgsql和mysql都是背后有商业公司,而且都不是一个公司。大部分开发者,都是拿工资的。
说mysql的执行速度比pgsql快很多是不对的,速度接近,而且很多时候取决于你的配置。
对于存储过程,函数,视图之类的功能,现在两个数据库都可以支持了。
另外多线程架构和多进程架构之间没有绝对的好坏,oracle在unix上是多进程架构,在windows上是多线程架构。
很多pg应用也是24/7的应用,比如skype. 最近几个版本VACUUM基本不影响PGSQL 运行,8.0之后的PGSQL不需要cygwin就可以在windows上运行。
至于说对于事务的支持,mysql和pgsql都没有问题。
看大数据最大技术难关之模糊检索,PostgreSQL如何攻克
但是由于“大数据”和“Hadoop”这两个热门词,即使很多人实际上不需要Hadoop,他们也愿意穿上“紧身衣”。
一、如果我的数据量是几百兆,Excel可能没法加载它
对于Excel软件来说的“很大的数据”并非大数据,其实还有其它极好的工具可以使用——我喜欢的Pandas。Pandas构建于Numpy库 之上,可以以矢量格式的方式有效地把数百兆的数据载入到内存中。在我购买已3年的笔记本上,它可以用Numpy在一眨眼的功夫把1亿的浮点数乘在一起。 Matlab和R也是极好的工具。
对于几百兆的数据量,典型的做法是写一个简单的Python脚本按行读取文件行,并处理它,向另一个文件写入。
二、如果我的数据是10GB呢
我买了个新笔记本,它有16GB的内存和256GB的SSD。如果你要载入一个10GB的CSV文件到Pandas,它占用的内存实际上是很小的 ——其结果是以数字类型的字符串保存的,如“17284832583”作为4字节货8字节的整数,或存储“284572452.2435723”字符串作 为8字节的双精度浮点数。
最坏的情况是你或许不能把所有的数据都同时载入到内存中。
三、如果我的数据是100GB、500GB或1TB呢
买个2TB或4TB的硬盘,在桌面PC或服务器上安装一个Postgre来解决它。
四、Hadoop远远比不上SQL或Python脚本
在计算的表达方面,Hadoop弱于SQL,也弱于Python脚本。
SQL是一个很直接的查询语言,适合做业务分析,SQL的查询相当简单,而且还非常快——如果你的数据库使用了正确的索引,二级查询或多级查询另当别论。
Hadoop没有索引的概念,Hadoop只有全表扫描,Hadoop有高度泄露抽象——我花了很多时间来处理Java的内存错误、文件碎片以及集群竞争,这些时间远大于我花在数据分析上的时间。
如果你的数据并不是像SQL表那样的结构化数据(比如纯文本、JSON对象、二进制对象),通常是直接写一个小的Python脚本来按行处理你的数据。把数据存储于文件,处理每一个文件,等等。如果换成是Hadoop就很麻烦。
相比于SQL或Python脚本,Hadoop要慢的多。正确的使用索引后,SQL查询总是非快——PostgreSQL简单的查找索引,检索确 切的键值。而Hadoop是全表扫描的,它会把整个表进行重新排序。通过把数据表分片到多台计算机上后,重排序是很快的。另一方面,处理二进制对 象,Hadoop需要重复往返于命名节点,目的是查找和处理数据。这适合用Python脚本来实现。
五、我的数据超过了5TB
你应该考虑使用Hadoop,而无需做过多的选择。
使用Hadoop唯一的好处是可伸缩性非常好。如果你有一个包含了数TB数据的表,Hadoop有一个适合全表扫描的选项。如果你没有这样大数据量的表,那么你应该像躲避瘟疫那样避免使用Hadoop。这样使用传统的方法来解决问题会更轻松。
六、Hadoop是一个极好的工具
我并不讨厌Hadoop,当我用其它工具不能很好处理数据时我会选择Hadoop。另外,我推荐使用Scalding,不要使用Hive或Pig。Scalding支持使用Scala语言来编写Hadoop任务链,隐藏了其下的MapReduce。
分享名称:包含postgresql难用的词条
转载注明:http://ybzwz.com/article/dscpesg.html