python中的训练函数 python基础训练

python中clf.fit什么意思

python训练的模型做预测:

成都创新互联是一家专注于网站设计制作、网站建设与策划设计,讷河网站建设哪家好?成都创新互联做网站,专注于网站建设10多年,网设计领域的专业建站公司;建站业务涵盖:讷河等地区。讷河做网站价格咨询:13518219792

如下:

1、 先要按照scikit-learn包,先安装下面三个依赖包:

Python (= 2.6 or = 3.3),

NumPy (= 1.6.1),

SciPy (= 0.9).

然后在cmd命令行中输入:

pip install -U scikit-learn

扩展资料

应用

系统编程:提供API(Application Programming Interface应用程序编程接口),能方便进行系统维护和管理,Linux下标志性语言之一,是很多系统管理员理想的编程工具。

图形处理:有PIL、Tkinter等图形库支持,能方便进行图形处理。

数学处理:NumPy扩展提供大量与许多标准数学库的接口。

文本处理:python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用python进行XML程序的开发。

数据库编程:程序员可通过遵循Python DB-API(数据库应用程序编程接口)规范的模块与Microsoft SQL Server,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。python自带有一个Gadfly模块,提供了一个完整的SQL环境。

网络编程:提供丰富的模块支持sockets编程,能方便快速地开发分布式应用程序。很多大规模软件开发计划例如Zope,Mnet 及BitTorrent. Google都在广泛地使用它。

Web编程:应用的开发语言,支持最新的XML技术。

参考资料来源:百度百科-计算机程序设计语言

python svm 怎么训练模型

支持向量机SVM(Support Vector Machine)是有监督的分类预测模型,本篇文章使用机器学习库scikit-learn中的手写数字数据集介绍使用Python对SVM模型进行训练并对手写数字进行识别的过程。

准备工作

手写数字识别的原理是将数字的图片分割为8X8的灰度值矩阵,将这64个灰度值作为每个数字的训练集对模型进行训练。手写数字所对应的真实数字作为分类结果。在机器学习sklearn库中已经包含了不同数字的8X8灰度值矩阵,因此我们首先导入sklearn库自带的datasets数据集。然后是交叉验证库,SVM分类算法库,绘制图表库等。

12345678910

#导入自带数据集from sklearn import datasets#导入交叉验证库from sklearn import cross_validation#导入SVM分类算法库from sklearn import svm#导入图表库import matplotlib.pyplot as plt#生成预测结果准确率的混淆矩阵from sklearn import metrics

读取并查看数字矩阵

从sklearn库自带的datasets数据集中读取数字的8X8矩阵信息并赋值给digits。

12

#读取自带数据集并赋值给digitsdigits = datasets.load_digits()

查看其中的数字9可以发现,手写的数字9以64个灰度值保存。从下面的8×8矩阵中很难看出这是数字9。

12

#查看数据集中数字9的矩阵digits.data[9]

以灰度值的方式输出手写数字9的图像,可以看出个大概轮廓。这就是经过切割并以灰度保存的手写数字9。它所对应的64个灰度值就是模型的训练集,而真实的数字9是目标分类。我们的模型所要做的就是在已知64个灰度值与每个数字对应关系的情况下,通过对模型进行训练来对新的手写数字对应的真实数字进行分类。

1234

#绘制图表查看数据集中数字9的图像plt.imshow(digits.images[9], cmap=plt.cm.gray_r, interpolation='nearest')plt.title('digits.target[9]')plt.show()

设置模型的特征X和预测目标Y

查看数据集中的分类目标,可以看到一共有10个分类,分布为0-9。我们将这个分类目标赋值给Y,作为模型的预测目标。

12

#数据集中的目标分类digits.target

12

#将数据集中的目标赋给YY=digits.target

手写数字的64个灰度值作为特征赋值给X,这里需要说明的是64个灰度值是以8×8矩阵的形式保持的,因此我们需要使用reshape函数重新调整矩阵的行列数。这里也就是将8×8的两维数据转换为64×1的一维数据。

123

#使用reshape函数对矩阵进行转换,并赋值给Xn_samples = len(digits.images)X = digits.images.reshape((n_samples, 64))

查看特征值X和预测目标Y的行数,共有1797行,也就是说数据集中共有1797个手写数字的图像,64列是经过我们转化后的灰度值。

12

#查看X和Y的行数X.shape,Y.shape

将数据分割为训练集和测试集

将1797个手写数字的灰度值采用随机抽样的方法分割为训练集和测试集,其中训练集为60%,测试集为40%。

12

#随机抽取生成训练集和测试集,其中训练集的比例为60%,测试集40%X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, Y, test_size=0.4, random_state=0)

查看分割后的测试集数据,共有1078条数据。这些数据将用来训练SVM模型。

12

#查看训练集的行数X_train.shape,y_train.shape

对SVM模型进行训练

将训练集数据X_train和y_train代入到SVM模型中,对模型进行训练。下面是具体的代码和结果。

12

#生成SVM分类模型clf = svm.SVC(gamma=0.001)

12

#使用训练集对svm分类模型进行训练clf.fit(X_train, y_train)

使用测试集测对模型进行测试

使用测试集数据X_test和y_test对训练后的SVM模型进行检验,模型对手写数字分类的准确率为99.3%。这是非常高的准确率。那么是否真的这么靠谱吗?下面我们来单独测试下。

12

#使用测试集衡量分类模型准确率clf.score(X_test, y_test)

我们使用测试集的特征X,也就是每个手写数字的64个灰度值代入到模型中,让SVM模型进行分类。

12

#对测试集数据进行预测predicted=clf.predict(X_test)

然后查看前20个手写数字的分类结果,也就是手写数字所对应的真实数字。下面是具体的分类结果。

12

#查看前20个测试集的预测结果predicted[:20]

再查看训练集中前20个分类结果,也就是真实数字的情况,并将之前的分类结果与测试集的真实结果进行对比。

12

#查看测试集中的真实结果expected=y_test

以下是测试集中前20个真实数字的结果,与前面SVM模型的分类结果对比,前20个结果是一致的。

12

#查看测试集中前20个真实结果expected[:20]

使用混淆矩阵来看下SVM模型对所有测试集数据的预测与真实结果的准确率情况,下面是一个10X10的矩阵,左上角第一行第一个数字60表示实际为0,SVM模型也预测为0的个数,第一行第二个数字表示实际为0,SVM模型预测为1的数字。第二行第二个数字73表示实际为1,SVM模型也预测为1的个数。

12

#生成准确率的混淆矩阵(Confusion matrix)metrics.confusion_matrix(expected, predicted)

从混淆矩阵中可以看到,大部分的数字SVM的分类和预测都是正确的,但也有个别的数字分类错误,例如真实的数字2,SVM模型有一次错误的分类为1,还有一次错误分类为7。

使用python在GPU上构建和训练卷积神经网络

我将对代码进行补充演练,以构建在数据集上训练的任何类型的图像分类器。在这个例子中,我将使用花卉数据集,其中包括102种不同类型的花。需要数据集和代码都可以私信我。

Pytorch是机器学习和Python上的免费软件包,非常易于使用。语法模拟numpy,因此,如果你在python中有一些科学计算经验,那么会相当有用的。只需几行代码,就可以下载预先训练的数据集,使用定义的变换对图像进行标准化,然后运行训练。

创建和扩充数据集

为了增加数据集,我使用' google_images_download'API 从互联网上下载了相关图像。显然,您可以使用此API不仅可以扩充现有数据集,还可以从头开始创建自己的数据集。

确保从图像中挑选出异常值(损坏的文件或偶然出现的无关图像)。

图像标准化

为了使图像具有相同的大小和像素变化,可以使用pytorch的transfors模块:

转移学习

从头开始训练的模型可能不是最明智的选择,因为有许多网络可用于各种数据集。简单地说,像edge-和其他简单形状检测器等低级特征对于不同的模型是相似的,即使clasificators是针对不同目的进行训练的。在本项目中,我使用了一个预训练网络Resnet152,只有最后一个完全连接的层重新用于新任务,即使这样也会产生相当好的效果。

在这里,我将除最后一层之外的所有层都设置为具有固定权重(requires_grad = False),因此只有最后层中的参数将通过梯度下降进行更新。

训练模型

下面介绍一下进行训练的函数:

如何获得GPU?

当然,对CPU的训练太慢了。根据我自己的经验,在GPU仅需要一个小时就可以完成12次训练周期,但是在CPU上相同数量的训练周期可能需要花费大约15个小时。

如果您没有本地可用的GPU,则可以考虑使用云GPU。为了加速CNN的训练,我使用了floydhub()上提供的云GPU 。

这项服务非常指的使用:总有很好的文档和大量的提示,所以你会很清楚的知道下一步需要如何去做。在floydhub上对于使用GPU的收费也是可以接受的。

首先,需要将数据集上传到服务器

然后,需要创建项目。需要在计算机上安装floydhub客户端,将数据集上载到其网站并在终端中运行以下命令:

其中'username'是您的登录名,'i'是数据集所在的文件夹。

这样子在训练网络时就会很轻松了

结果和改进想法

得到的模型在数据集上训练了1.5小时,并在验证数据集上达到了95%的准确度。


新闻名称:python中的训练函数 python基础训练
标题链接:http://ybzwz.com/article/dosoidd.html