对numpy和pandas中数组的合并和拆分详解-创新互联

合并

创新互联建站是一家专业提供从化企业网站建设,专注与成都网站设计、网站制作、外贸营销网站建设html5、小程序制作等业务。10年已为从化众多企业、政府机构等服务。创新互联专业网站制作公司优惠进行中。

numpy中

numpy中可以通过concatenate,指定参数axis=0 或者 axis=1,在纵轴和横轴上合并两个数组。

import numpy as np
import pandas as pd
arr1=np.ones((3,5))
arr1
Out[5]: 
array([[ 1., 1., 1., 1., 1.],
    [ 1., 1., 1., 1., 1.],
    [ 1., 1., 1., 1., 1.]])
arr2=np.random.randn(15).reshape(arr1.shape)
arr2
Out[8]: 
array([[-0.09666833, 1.47064828, -1.94608976, 0.2651279 , -0.32894787],
    [ 1.01187699, 0.39171167, 1.49607091, 0.79216196, 0.33246644],
    [ 1.71266238, 0.86650837, 0.77830394, -0.90519422, 1.55410056]])
np.concatenate([arr1,arr2],axis=0) #在纵轴上合并
Out[9]: 
array([[ 1.    , 1.    , 1.    , 1.    , 1.    ],
    [ 1.    , 1.    , 1.    , 1.    , 1.    ],
    [ 1.    , 1.    , 1.    , 1.    , 1.    ],
    [-0.09666833, 1.47064828, -1.94608976, 0.2651279 , -0.32894787],
    [ 1.01187699, 0.39171167, 1.49607091, 0.79216196, 0.33246644],
    [ 1.71266238, 0.86650837, 0.77830394, -0.90519422, 1.55410056]])
np.concatenate([arr1,arr2],axis=1) #在横轴上合并
Out[10]: 
array([[ 1.    , 1.    , 1.    , ..., -1.94608976,
     0.2651279 , -0.32894787],
    [ 1.    , 1.    , 1.    , ..., 1.49607091,
     0.79216196, 0.33246644],
    [ 1.    , 1.    , 1.    , ..., 0.77830394,
    -0.90519422, 1.55410056]])
np.hstack([arr1,arr2]) # 水平 horizon 
np.vstack([arr1,arr2]) # 垂直 vertical 

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


标题名称:对numpy和pandas中数组的合并和拆分详解-创新互联
网页地址:http://ybzwz.com/article/doiccd.html