python拟合函数的库 python曲线拟合函数

python有没有哪个库能实现三维曲面的拟合?该如何实现?

matlab的话

创新互联主营牡丹江网站建设的网络公司,主营网站建设方案,app软件定制开发,牡丹江h5成都小程序开发搭建,牡丹江网站营销推广欢迎牡丹江等地区企业咨询

方法一

用[xx,yy] = meshgrid(x_min:step:x_max,y_min:step:y_max)生成x和y的坐标

用zz = griddata(x,y,z,xx,yy,'v4')插值生成相应的z坐标

方法二

用tri = delaunay(x,y)让点自行连接成一个个三角形

trisurf(tri,x,y,z)生成曲面

再用shading interp 插值拟合

如果你的曲面在xy平面的投影不是矩形的话,记得用inpolygon吧不在区域内的点删除掉

Python最小二乘法拟合与作图

在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最小:

这种算法称为最小二乘法拟合。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算。

此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:

Python的使用中需要导入相应的模块,此处首先用 import 语句

分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程。leastsq则为最小二乘法拟合函数。pylab是绘图模块。

接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:

其参数有:

进行拟合时,首先我们需要定义一个目标函数。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:

紧接着就可以进行拟合了, leastsq() 函数需要至少提供拟合的函数名与参数的初始值:

返回的结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值。

leastsq() 的参数具体有:

输出选项有:

最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:

pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状,粗细以及对应名称等性质。视需求而定,此处不做详解。

pylab.legend() 函数可以调控图像标签的位置,有无边框等性质。

pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数。

pylab.show() 函数用于显示图像。

最终结果如下图所示:

用Python作科学计算

numpy.loadtxt

scipy.optimize.leastsq

Python 中的函数拟合

很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)

本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。

通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。

运行结果:

对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。

运行结果:


当前文章:python拟合函数的库 python曲线拟合函数
浏览路径:http://ybzwz.com/article/doeopjd.html