mysql怎么使用gap 如何使用mysql

MySQL可重复读防止幻读

接上篇 事务隔离级别和幻读 ,留了个坑,没想到竟然过了10天,时间不注意真的过的好快。顺便提下,图片链接是属于网站的,开发自己的图床迫在眉睫,万一哪天迁移就要做很多额外工作,一些概念或者思路用图片表达更直观清楚。

创新互联专注于阿里地区企业网站建设,成都响应式网站建设公司,商城网站建设。阿里地区网站建设公司,为阿里地区等地区提供建站服务。全流程定制网站,专业设计,全程项目跟踪,创新互联专业和态度为您提供的服务

回到正题,之前提到一般情况下MySQL的InnoDB引擎在可重复读的情况下是没法保证不出现幻读的,但实际情况是MySQL可以通过加锁来防止幻读的出现,这种锁定通过Next-key机制来实现,是属于记录锁和间隙锁(Gap锁)的结合。

引申,行级别锁的三种算法:

举个存在唯一索引和辅助索引的例子做说明:

执行 select * from test where b = 3 for update

存在两个索引,分别加锁,唯一主键列a加record lock , 辅助索引列b加next-key lock (1,3) 以及给下一个值的区间(3,6)加gap锁;

因此在另一个事务里执行以下语句都会阻塞,具体分析:

第一个阻塞因为加了唯一索引的record lock a = 5;

第二个主键插入4,符合条件,但是根据辅助索引b 的范围, b = 2 在(1,3)中,同样阻塞;

第三个a =6 不在主键a锁定范围,b = 5 也不在辅助索引b 的范围(1,3)中,但在另一个gap锁范围(3,6)中,因此也阻塞;

这种锁定情形下,可以执行的包括类似语句:

insert的特殊情况

对于insert 会检查下一条记录是否被锁定,如上述例子有 select * from test where b = 3 for update 插入 insert into test select 2,2 会检测到b = 3 已经被锁定,而 insert into test select 2,0 可以执行;

[1]:《MySQL技术内幕:InnoDB存储引擎》-第六章:锁

mysql 核心内容-上

1、SQL语句执行流程

MySQL大体上可分为Server层和存储引擎层两部分。

Server层:

连接器:TCP握手后服务器来验证登陆用户身份,A用户创建连接后,管理员对A用户权限修改了也不会影响到已经创建的链接权限,必须重新登陆。

查询缓存:查询后的结果存储位置,MySQL8.0版本以后已经取消,因为查询缓存失效太频繁,得不偿失。

分析器:根据语法规则,判断你输入的这个SQL语句是否满足MySQL语法。

优化器:多种执行策略可实现目标,系统自动选择最优进行执行。

执行器:判断是否有权限,将最终任务提交到存储引擎。

存储引擎层

负责数据的存储和提取。其架构模式是插件式的,支持InnoDB、MyISAM、Memory等多个存储引擎。现在最常用的存储引擎是InnoDB,它从MySQL 5.5.5版本开始成为了默认存储引擎(经常用的也是这个)。

SQL执行顺序

2、BinLog、RedoLog、UndoLog

BinLog

BinLog是记录所有数据库表结构变更(例如create、alter table)以及表数据修改(insert、update、delete)的二进制日志,主从数据库同步用到的都是BinLog文件。BinLog日志文件有三种模式。

STATEMENT 模式

内容:binlog 记录可能引起数据变更的 sql 语句

优势:该模式下,因为没有记录实际的数据,所以日志量很少 IO 都消耗很低,性能是最优的

劣势:但有些操作并不是确定的,比如 uuid() 函数会随机产生唯一标识,当依赖 binlog 回放时,该操作生成的数据与原数据必然是不同的,此时可能造成无法预料的后果。

ROW 模式

内容:在该模式下,binlog 会记录每次操作的源数据与修改后的目标数据,StreamSets就要求该模式。

优势:可以绝对精准的还原,从而保证了数据的安全与可靠,并且复制和数据恢复过程可以是并发进行的

劣势:缺点在于 binlog 体积会非常大,同时,对于修改记录多、字段长度大的操作来说,记录时性能消耗会很严重。阅读的时候也需要特殊指令来进行读取数据。

MIXED 模式

内容:是对上述STATEMENT 跟 ROW 两种模式的混合使用。

细节:对于绝大部分操作,都是使用 STATEMENT 来进行 binlog 没有记录,只有以下操作使用 ROW 来实现:表的存储引擎为 NDB,使用了uuid() 等不确定函数,使用了 insert delay 语句,使用了临时表

主从同步流程:

1、主节点必须启用二进制日志,记录任何修改了数据库数据的事件。

2、从节点开启一个线程(I/O Thread)把自己扮演成 mysql 的客户端,通过 mysql 协议,请求主节点的二进制日志文件中的事件 。

3、主节点启动一个线程(dump Thread),检查自己二进制日志中的事件,跟对方请求的位置对比,如果不带请求位置参数,则主节点就会从第一个日志文件中的第一个事件一个一个发送给从节点。

4、从节点接收到主节点发送过来的数据把它放置到中继日志(Relay log)文件中。并记录该次请求到主节点的具体哪一个二进制日志文件内部的哪一个位置(主节点中的二进制文件会有多个)。

5、从节点启动另外一个线程(sql Thread ),把 Relay log 中的事件读取出来,并在本地再执行一次。

mysql默认的复制方式是异步的,并且复制的时候是有并行复制能力的。主库把日志发送给从库后不管了,这样会产生一个问题就是假设主库挂了,从库处理失败了,这时候从库升为主库后,日志就丢失了。由此产生两个概念。

全同步复制

主库写入binlog后强制同步日志到从库,所有的从库都执行完成后才返回给客户端,但是很显然这个方式的话性能会受到严重影响。

半同步复制

半同步复制的逻辑是这样,从库写入日志成功后返回ACK确认给主库,主库收到至少一个从库的确认就认为写操作完成。

还可以延伸到由于主从配置不一样、主库大事务、从库压力过大、网络震荡等造成主备延迟,如何避免这个问题?主备切换的时候用可靠性优先原则还是可用性优先原则?如何判断主库Crash了?互为主备的情况下如何避免主备循环复制?被删库跑路了如何正确恢复?( o )… 感觉越来越扯到DBA的活儿上去了。

RedoLog

可以先通过下面demo理解:

饭点记账可以把账单写在账本上也可以写在粉板上。有人赊账或者还账的话,一般有两种做法:

1、直接把账本翻出来,把这次赊的账加上去或者扣除掉。

2、先在粉板上记下这次的账,等打烊以后再把账本翻出来核算。

生意忙时选后者,因为前者太麻烦了。得在密密麻麻的记录中找到这个人的赊账总额信息,找到之后再拿出算盘计算,最后再将结果写回到账本上。

同样在MySQL中如果每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程IO成本、查找成本都很高。而粉板和账本配合的整个过程就是MySQL用到的是Write-Ahead Logging 技术,它的关键点就是先写日志,再写磁盘。此时账本 = BinLog,粉板 = RedoLog。

1、 记录更新时,InnoDB引擎就会先把记录写到RedoLog(粉板)里面,并更新内存。同时,InnoDB引擎会在空闲时将这个操作记录更新到磁盘里面。

2、 如果更新太多RedoLog处理不了的时候,需先将RedoLog部分数据写到磁盘,然后擦除RedoLog部分数据。RedoLog类似转盘。

RedoLog有write pos 跟checkpoint

write pos :是当前记录的位置,一边写一边后移,写到第3号文件末尾后就回到0号文件开头。

check point:是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。

write pos和check point之间的是粉板上还空着的部分,可以用来记录新的操作。如果write pos追上checkpoint,表示粉板满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把checkpoint推进一下。

有了redo log,InnoDB就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe。 redolog两阶段提交:为了让binlog跟redolog两份日志之间的逻辑一致。提交流程大致如下:

1 prepare阶段 -- 2 写binlog -- 3 commit

当在2之前崩溃时,重启恢复后发现没有commit,回滚。备份恢复:没有binlog 。一致

当在3之前崩溃时,重启恢复发现虽没有commit,但满足prepare和binlog完整,所以重启后会自动commit。备份:有binlog. 一致

binlog跟redolog区别:

redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。

redo log是物理日志,记录的是在某个数据页上做了什么修改;binlog是逻辑日志,记录的是这个语句的原始逻辑,比如给ID=2这一行的c字段加1。

redo log是循环写的,空间固定会用完;binlog是可以追加写入的。追加写是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

UndoLog

UndoLog 一般是逻辑日志,主要分为两种:

insert undo log

代表事务在insert新记录时产生的undo log, 只在事务回滚时需要,并且在事务提交后可以被立即丢弃

update undo log

事务在进行update或delete时产生的undo log; 不仅在事务回滚时需要,在快照读时也需要;所以不能随便删除,只有在快速读或事务回滚不涉及该日志时,对应的日志才会被purge线程统一清除

3、MySQL中的索引

索引的常见模型有哈希表、有序数组和搜索树。

哈希表:一种以KV存储数据的结构,只适合等值查询,不适合范围查询。

有序数组:只适用于静态存储引擎,涉及到插入的时候比较麻烦。可以参考Java中的ArrayList。

搜索树:按照数据结构中的二叉树来存储数据,不过此时是N叉树(B+树)。广泛应用在存储引擎层中。

B+树比B树优势在于:

B+ 树非叶子节点存储的只是索引,可以存储的更多。B+树比B树更加矮胖,IO次数更少。

B+ 树叶子节点前后管理,更加方便范围查询。同时结果都在叶子节点,查询效率稳定。

B+树中更有利于对数据扫描,可以避免B树的回溯扫描。

索引的优点:

1、唯一索引可以保证每一行数据的唯一性

2、提高查询速度

3、加速表与表的连接

4、显著的减少查询中分组和排序的时间

5、通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

索引的缺点:

1、创建跟维护都需要耗时

2、创建索引时,需要对表加锁,在锁表的同时,可能会影响到其他的数据操作

3、 索引需要磁盘的空间进行存储,磁盘占用也很快。

4、当对表中的数据进行CRUD的时,也会触发索引的维护,而维护索引需要时间,可能会降低数据操作性能

索引设计的原则不应该:

1、索引不是越多越好。索引太多,维护索引需要时间跟空间。

2、 频繁更新的数据,不宜建索引。

3、数据量小的表没必要建立索引。

应该:

1、重复率小的列建议生成索引。因为重复数据少,索引树查询更有效率,等价基数越大越好。

2、数据具有唯一性,建议生成唯一性索引。在数据库的层面,保证数据正确性

3、频繁group by、order by的列建议生成索引。可以大幅提高分组和排序效率

4、经常用于查询条件的字段建议生成索引。通过索引查询,速度更快

索引失效的场景

1、模糊搜索:左模糊或全模糊都会导致索引失效,比如'%a'和'%a%'。但是右模糊是可以利用索引的,比如'a%' 。

2、隐式类型转换:比如select * from t where name = xxx , name是字符串类型,但是没有加引号,所以是由MySQL隐式转换的,所以会让索引失效 3、当语句中带有or的时候:比如select * from t where name=‘sw’ or age=14

4、不符合联合索引的最左前缀匹配:(A,B,C)的联合索引,你只where了C或B或只有B,C

关于索引的知识点:

主键索引:主键索引的叶子节点存的是整行数据信息。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。主键自增是无法保证完全自增的哦,遇到唯一键冲突、事务回滚等都可能导致不连续。

唯一索引:以唯一列生成的索引,该列不允许有重复值,但允许有空值(NULL)

普通索引跟唯一索引查询性能:InnoDB的数据是按数据页为单位来读写的,默认每页16KB,因此这两种索引查询数据性能差别微乎其微。

change buffer:普通索引用在更新过程的加速,更新的字段如果在缓存中,如果是普通索引则直接更新即可。如果是唯一索引需要将所有数据读入内存来确保不违背唯一性,所以尽量用普通索引。

非主键索引:非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)

回表:先通过数据库索引扫描出数据所在的行,再通过行主键id取出索引中未提供的数据,即基于非主键索引的查询需要多扫描一棵索引树。

覆盖索引:如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为覆盖索引。

联合索引:相对单列索引,组合索引是用多个列组合构建的索引,一次性最多联合16个。

最左前缀原则:对多个字段同时建立的组合索引(有顺序,ABC,ACB是完全不同的两种联合索引) 以联合索引(a,b,c)为例,建立这样的索引相当于建立了索引a、ab、abc三个索引。另外组合索引实际还是一个索引,并非真的创建了多个索引,只是产生的效果等价于产生多个索引。

索引下推:MySQL 5.6引入了索引下推优化,可以在索引遍历过程中,对索引中包含的字段先做判断,过滤掉不符合条件的记录,减少回表字数。

索引维护:B+树为了维护索引有序性涉及到页分裂跟页合并。增删数据时需考虑页空间利用率。

自增主键:一般会建立与业务无关的自增主键,不会触发叶子节点分裂。

延迟关联:通过使用覆盖索引查询返回需要的主键,再根据主键关联原表获得需要的数据。

InnoDB存储: * .frm文件是一份定义文件,也就是定义数据库表是一张怎么样的表。*.ibd文件则是该表的索引,数据存储文件,既该表的所有索引树,所有行记录数据都存储在该文件中。

MyISAM存储:* .frm文件是一份定义文件,也就是定义数据库表是一张怎么样的表。* .MYD文件是MyISAM存储引擎表的所有行数据的文件。* .MYI文件存放的是MyISAM存储引擎表的索引相关数据的文件。MyISAM引擎下,表数据和表索引数据是分开存储的。

MyISAM查询:在MyISAM下,主键索引和辅助键索引都属于非聚簇索引。查询不管是走主键索引,还是非主键索引,在叶子结点得到的都是目的数据的地址,还需要通过该地址,才能在数据文件中找到目的数据。

PS:InnoDB支持聚簇索引,MyISAM不支持聚簇索引

4、SQL事务隔离级别

ACID的四个特性

原子性(Atomicity):把多个操作放到一个事务中,保证这些操作要么都成功,要么都不成功

一致性(Consistency):理解成一串对数据进行操作的程序执行下来,不会对数据产生不好的影响,比如凭空产生,或消失

隔离性(Isolation,又称独立性):隔离性的意思就是多个事务之间互相不干扰,即使是并发事务的情况下,他们只是两个并发执行没有交集,互不影响的东西;当然实现中,也不一定需要这么完整隔离性,即不一定需要这么的互不干扰,有时候还是允许有部分干扰的。所以MySQL可以支持4种事务隔离性

持久性(Durability):当某个操作操作完毕了,那么结果就是这样了,并且这个操作会持久化到日志记录中

PS:ACID中C与CAP定理中C的区别

ACID的C着重强调单数据库事务操作时,要保证数据的完整和正确性,数据不会凭空消失跟增加。CAP 理论中的C指的是对一个数据多个备份的读写一致性

事务操作可能会出现的数据问题

1、脏读(dirty read):B事务更改数据还未提交,A事务已经看到并且用了。B事务如果回滚,则A事务做错了

2、 不可重复读(non-repeatable read):不可重复读的重点是修改: 同样的条件, 你读取过的数据, 再次读取出来发现值不一样了,只需要锁住满足条件的记录

3、 幻读(phantom read):事务A先修改了某个表的所有纪录的状态字段为已处理,未提交;事务B也在此时新增了一条未处理的记录,并提交了;事务A随后查询记录,却发现有一条记录是未处理的造成幻读现象,幻读仅专指新插入的行。幻读会造成语义上的问题跟数据一致性问题。

4、 在可重复读RR隔离级别下,普通查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在当前读下才会出现。要用间隙锁解决此问题。

在说隔离级别之前,你首先要知道,你隔离得越严实,效率就会越低。因此很多时候,我们都要在二者之间寻找一个平衡点。SQL标准的事务隔离级别由低到高如下: 上图从上到下的模式会导致系统的并行性能依次降低,安全性依次提高。

读未提交:别人改数据的事务尚未提交,我在我的事务中也能读到。

读已提交(Oracle默认):别人改数据的事务已经提交,我在我的事务中才能读到。

可重复读(MySQL默认):别人改数据的事务已经提交,我在我的事务中也不去读,以此保证重复读一致性。

串行:我的事务尚未提交,别人就别想改数据。

标准跟实现:上面都是关于事务的标准,但是每一种数据库都有不同的实现,比如MySQL InnDB 默认为RR级别,但是不会出现幻读。因为当事务A更新了所有记录的某个字段,此时事务A会获得对这个表的表锁,因为事务A还没有提交,所以事务A获得的锁没有释放,此时事务B在该表插入新记录,会因为无法获得该表的锁,则导致插入操作被阻塞。只有事务A提交了事务后,释放了锁,事务B才能进行接下去的操作。所以可以说 MySQL的RR级别的隔离是已经实现解决了脏读,不可重复读和幻读的。

5、MySQL中的锁

无论是Java的并发编程还是数据库的并发操作都会涉及到锁,研发人员引入了悲观锁跟乐观锁这样一种锁的设计思想。

悲观锁:

优点:适合在写多读少的并发环境中使用,虽然无法维持非常高的性能,但是在乐观锁无法提更好的性能前提下,可以做到数据的安全性

缺点:加锁会增加系统开销,虽然能保证数据的安全,但数据处理吞吐量低,不适合在读书写少的场合下使用

乐观锁:

优点:在读多写少的并发场景下,可以避免数据库加锁的开销,提高DAO层的响应性能,很多情况下ORM工具都有带有乐观锁的实现,所以这些方法不一定需要我们人为的去实现。

缺点:在写多读少的并发场景下,即在写操作竞争激烈的情况下,会导致CAS多次重试,冲突频率过高,导致开销比悲观锁更高。

实现:数据库层面的乐观锁其实跟CAS思想类似, 通数据版本号或者时间戳也可以实现。

数据库并发场景主要有三种:

读-读:不存在任何问题,也不需要并发控制

读-写:有隔离性问题,可能遇到脏读,幻读,不可重复读

写-写:可能存更新丢失问题,比如第一类更新丢失,第二类更新丢失

两类更新丢失问题:

第一类更新丢失:事务A的事务回滚覆盖了事务B已提交的结果 第二类更新丢失:事务A的提交覆盖了事务B已提交的结果

为了合理贯彻落实锁的思想,MySQL中引入了杂七杂八的各种锁:

锁分类

MySQL支持三种层级的锁定,分别为

表级锁定

MySQL中锁定粒度最大的一种锁,最常使用的MYISAM与INNODB都支持表级锁定。

页级锁定

是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁,表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。

行级锁定

Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大行级锁不一定比表级锁要好:锁的粒度越细,代价越高,相比表级锁在表的头部直接加锁,行级锁还要扫描找到对应的行对其上锁,这样的代价其实是比较高的,所以表锁和行锁各有所长。

MyISAM中的锁

虽然MySQL支持表,页,行三级锁定,但MyISAM存储引擎只支持表锁。所以MyISAM的加锁相对比较开销低,但数据操作的并发性能相对就不高。但如果写操作都是尾插入,那还是可以支持一定程度的读写并发

从MyISAM所支持的锁中也可以看出,MyISAM是一个支持读读并发,但不支持通用读写并发,写写并发的数据库引擎,所以它更适合用于读多写少的应用场合,一般工程中也用的较少。

InnoDB中的锁

该模式下支持的锁实在是太多了,具体如下:

共享锁和排他锁 (Shared and Exclusive Locks)

意向锁(Intention Locks)

记录锁(Record Locks)

间隙锁(Gap Locks)

临键锁 (Next-Key Locks)

插入意向锁(Insert Intention Locks)

主键自增锁 (AUTO-INC Locks)

空间索引断言锁(Predicate Locks for Spatial Indexes)

举个栗子,比如行锁里的共享锁跟排它锁:lock in share modle 共享读锁:

为了确保自己查到的数据没有被其他的事务正在修改,也就是说确保查到的数据是最新的数据,并且不允许其他人来修改数据。但是自己不一定能够修改数据,因为有可能其他的事务也对这些数据使用了 in share mode 的方式上了S 锁。如果不及时的commit 或者rollback 也可能会造成大量的事务等待。

for update排它写锁:

为了让自己查到的数据确保是最新数据,并且查到后的数据只允许自己来修改的时候,需要用到for update。相当于一个 update 语句。在业务繁忙的情况下,如果事务没有及时的commit或者rollback 可能会造成其他事务长时间的等待,从而影响数据库的并发使用效率。

Gap Lock间隙锁:

1、行锁只能锁住行,如果在记录之间的间隙插入数据就无法解决了,因此MySQL引入了间隙锁(Gap Lock)。间隙锁是左右开区间。间隙锁之间不会冲突。

2、间隙锁和行锁合称NextKeyLock,每个NextKeyLock是前开后闭区间。

间隙锁加锁原则(学完忘那种):

1、加锁的基本单位是 NextKeyLock,是前开后闭区间。

2、查找过程中访问到的对象才会加锁。

3、索引上的等值查询,给唯一索引加锁的时候,NextKeyLock退化为行锁。

4、索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,NextKeyLock退化为间隙锁。

5、唯一索引上的范围查询会访问到不满足条件的第一个值为止。

mysql 的事务隔离级别 及各个隔离级别应用场景,详细

术式之后皆为逻辑,一切皆为需求和实现。希望此文能从需求、现状和解决方式的角度帮大家理解隔离级别。

隔离级别的产生

在串型执行的条件下,数据修改的顺序是固定的、可预期的结果,但是并发执行的情况下,数据的修改是不可预期的,也不固定,为了实现数据修改在并发执行的情况下得到一个固定、可预期的结果,由此产生了隔离级别。

所以隔离级别的作用是用来平衡数据库并发访问与数据一致性的方法。

事务的4种隔离级别

READ UNCOMMITTED       未提交读,可以读取未提交的数据。READ COMMITTED         已提交读,对于锁定读(select with for update 或者 for share)、update 和 delete 语句,                       InnoDB 仅锁定索引记录,而不锁定它们之间的间隙,因此允许在锁定的记录旁边自由插入新记录。                       Gap locking 仅用于外键约束检查和重复键检查。REPEATABLE READ        可重复读,事务中的一致性读取读取的是事务第一次读取所建立的快照。SERIALIZABLE           序列化

在了解了 4 种隔离级别的需求后,在采用锁控制隔离级别的基础上,我们需要了解加锁的对象(数据本身间隙),以及了解整个数据范围的全集组成。

数据范围全集组成

SQL 语句根据条件判断不需要扫描的数据范围(不加锁);

SQL 语句根据条件扫描到的可能需要加锁的数据范围;

以单个数据范围为例,数据范围全集包含:(数据范围不一定是连续的值,也可能是间隔的值组成)

1. 数据已经填充了整个数据范围:(被完全填充的数据范围,不存在数据间隙)

整形,对值具有唯一约束条件的数据范围 1~5 ,

已有数据1、2、3、4、5,此时数据范围已被完全填充;

整形,对值具有唯一约束条件的数据范围 1 和 5 ,

已有数据1、5,此时数据范围已被完全填充;

2. 数据填充了部分数据范围:(未被完全填充的数据范围,是存在数据间隙)

整形的数据范围 1~5 ,

已有数据 1、2、3、4、5,但是因为没有唯一约束,

所以数据范围可以继续被 1~5 的数据重复填充;

整形,具有唯一约束条件的数据范围 1~5 ,

已有数据 2,5,此时数据范围未被完全填充,还可以填充 1、3、4 ;

3. 数据范围内没有任何数据(存在间隙)

如下:

整形的数据范围 1~5 ,数据范围内当前没有任何数据。

在了解了数据全集的组成后,我们再来看看事务并发时,会带来的问题。

无控制的并发所带来的问题

并发事务如果不加以控制的话会带来一些问题,主要包括以下几种情况。

1. 范围内已有数据更改导致的:

更新丢失:当多个事务选择了同一行,然后基于最初选定的值更新该行时,

由于每个事物不知道其他事务的存在,最后的更新就会覆盖其他事务所做的更新;

脏读: 一个事务正在对一条记录做修改,这个事务完成并提交前,这条记录就处于不一致状态。

这时,另外一个事务也来读取同一条记录,如果不加控制,

第二个事务读取了这些“脏”数据,并据此做了进一步的处理,就会产生提交的数据依赖关系。

这种现象就叫“脏读”。

2. 范围内数据量发生了变化导致:

不可重复读:一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,

却发现其读出的数据已经发生了改变,或者某些记录已经被删除了。

这种现象就叫“不可重复读”。

幻读:一个事务按相同的查询条件重新读取以前检索过的数据,

却发现其他事务插入了满足其查询条件的新数据,这种现象称为“幻读”。

可以简单的认为满足条件的数据量变化了。

因为无控制的并发会带来一系列的问题,这些问题会导致无法满足我们所需要的结果。因此我们需要控制并发,以实现我们所期望的结果(隔离级别)。

MySQL 隔离级别的实现

InnoDB 通过加锁的策略来支持这些隔离级别。

行锁包含:

Record Locks

索引记录锁,索引记录锁始终锁定索引记录,即使表中未定义索引,

这种情况下,InnoDB 创建一个隐藏的聚簇索引,并使用该索引进行记录锁定。

Gap Locks

间隙锁是索引记录之间的间隙上的锁,或者对第一条记录之前或者最后一条记录之后的锁。

间隙锁是性能和并发之间权衡的一部分。

对于无间隙的数据范围不需要间隙锁,因为没有间隙。

Next-Key Locks

索引记录上的记录锁和索引记录之前的 gap lock 的组合。

假设索引包含 10、11、13 和 20。

可能的next-key locks包括以下间隔,其中圆括号表示不包含间隔端点,方括号表示包含端点:

(负无穷大, 10]    (10, 11]    (11, 13]    (13, 20]    (20, 正无穷大)        对于最后一个间隔,next-key将会锁定索引中最大值的上方,

左右滑动进行查看

"上确界"伪记录的值高于索引中任何实际值。

上确界不是一个真正的索引记录,因此,实际上,这个 next-key 只锁定最大索引值之后的间隙。

基于此,当获取的数据范围中,数据已填充了所有的数据范围,那么此时是不存在间隙的,也就不需要 gap lock。

对于数据范围内存在间隙的,需要根据隔离级别确认是否对间隙加锁。

默认的 REPEATABLE READ 隔离级别,为了保证可重复读,除了对数据本身加锁以外,还需要对数据间隙加锁。

READ COMMITTED 已提交读,不匹配行的记录锁在 MySQL 评估了 where 条件后释放。

对于 update 语句,InnoDB 执行 "semi-consistent" 读取,这样它会将最新提交的版本返回到 MySQL,

以便 MySQL 可以确定该行是否与 update 的 where 条件相匹配。

总结延展:

唯一索引存在唯一约束,所以变更后的数据若违反了唯一约束的原则,则会失败。

当 where 条件使用二级索引筛选数据时,会对二级索引命中的条目和对应的聚簇索引都加锁;所以其他事务变更命中加锁的聚簇索引时,都会等待锁。

行锁的增加是一行一行增加的,所以可能导致并发情况下死锁的发生。

例如,

在 session A 对符合条件的某聚簇索引加锁时,可能 session B 已持有该聚簇索引的 Record Locks,而 session B 正在等待 session A 已持有的某聚簇索引的 Record Locks。

session A 和 session B 是通过两个不相干的二级索引定位到的聚簇索引。

session A 通过索引 idA,session B通过索引 idB 。

当 where 条件获取的数据无间隙时,无论隔离级别为 rc 或 rr,都不会存在间隙锁。

比如通过唯一索引获取到了已完全填充的数据范围,此时不需要间隙锁。

间隙锁的目的在于阻止数据插入间隙,所以无论是通过 insert 或 update 变更导致的间隙内数据的存在,都会被阻止。

rc 隔离级别模式下,查询和索引扫描将禁用 gap locking,此时 gap locking 仅用于外键约束检查和重复键检查(主要是唯一性检查)。

rr 模式下,为了防止幻读,会加上 Gap Locks。

事务中,SQL 开始则加锁,事务结束才释放锁。

就锁类型而言,应该有优化锁,锁升级等,例如rr模式未使用索引查询的情况下,是否可以直接升级为表锁。

就锁的应用场景而言,在回放场景中,如果确定事务可并发,则可以考虑不加锁,加快回放速度。

锁只是并发控制的一种粒度,只是一个很小的部分:

从不同场景下是否需要控制并发,(已知无交集且有序的数据的变更,MySQL 的 MTS 相同前置事务的多事务并发回放)

并发控制的粒度,(锁是一种逻辑粒度,可能还存在物理层和其他逻辑粒度或方式)

相同粒度下的优化,(锁本身存在优化,如IX、IS类型的优化锁)

粒度加载的安全性能(如获取行锁前,先获取页锁,页锁在执行获取行锁操作后即释放,无论是否获取成功)等多个层次去思考并发这玩意。

mysql 的锁以及间隙锁

mysql 为并发事务同时对一条记录进行读写时,提出了两种解决方案:

1)使用 mvcc 的方法,实现多事务的并发读写,但是这种读只是“快照读”,一般读的是历史版本数据,还有一种是“当前读”,一般加锁实现“当前读”,或者 insert、update、delete 也是当前读。

2)使用加锁的方法,锁分为共享锁(读锁),排他锁(写锁)

快照读:就是select

当前读:特殊的读操作,插入/更新/删除操作,属于当前读,处理的都是当前的数据,需要加锁。

mysql 在 RR 级别怎么处理幻读的呢?一般来说,RR 级别通过 mvcc 机制,保证读到低于后面事务的数据。但是 select for update 不会触发 mvcc,它是当前读。如果后面事务插入数据并提交,那么在 RR 级别就会读到插入的数据。所以,mysql 使用 行锁 + gap 锁(简称 next-key 锁)来防止当前读的时候插入。

Gap Lock在InnoDB的唯一作用就是防止其他事务的插入操作,以此防止幻读的发生。

Innodb自动使用间隙锁的条件:

mysql读数据时怎么加写锁

加锁情况与死锁原因分析

为方便大家复现,完整表结构和数据如下:

CREATE TABLE `t3` (

`c1` int(11) NOT NULL AUTO_INCREMENT,

`c2` int(11) DEFAULT NULL,

PRIMARY KEY (`c1`),

UNIQUE KEY `c2` (`c2`)

) ENGINE=InnoDB

insert into t3 values(1,1),(15,15),(20,20);

在 session1 执行 commit 的瞬间,我们会看到 session2、session3 的其中一个报死锁。这个死锁是这样产生的:

1. session1 执行 delete  会在唯一索引 c2 的 c2 = 15 这一记录上加 X lock(也就是在MySQL 内部观测到的:X Lock but not gap);

2. session2 和 session3 在执行 insert 的时候,由于唯一约束检测发生唯一冲突,会加 S Next-Key Lock,即对 (1,15] 这个区间加锁包括间隙,并且被 seesion1 的 X Lock 阻塞,进入等待;

3. session1 在执行 commit 后,会释放 X Lock,session2 和 session3 都获得 S Next-Key Lock;

4. session2 和 session3 继续执行插入操作,这个时候 INSERT INTENTION LOCK(插入意向锁)出现了,并且由于插入意向锁会被 gap 锁阻塞,所以 session2 和 session3 互相等待,造成死锁。

死锁日志如下:

请点击输入图片描述

INSERT INTENTION LOCK

在之前的死锁分析第四点,如果不分析插入意向锁,也是会造成死锁的,因为插入最终还是要对记录加 X Lock 的,session2 和 session3 还是会互相阻塞互相等待。

但是插入意向锁是客观存在的,我们可以在官方手册中查到,不可忽略:

Prior to inserting the row, a type of gap lock called an insert intention gap lock is set. This lock signals the intent to insert in such a way that multiple transactions inserting into the same index gap need not wait for each other if they are not inserting at the same position within the gap.

插入意向锁其实是一种特殊的 gap lock,但是它不会阻塞其他锁。假设存在值为 4 和 7 的索引记录,尝试插入值 5 和 6 的两个事务在获取插入行上的排它锁之前使用插入意向锁锁定间隙,即在(4,7)上加 gap lock,但是这两个事务不会互相冲突等待。

当插入一条记录时,会去检查当前插入位置的下一条记录上是否存在锁对象,如果下一条记录上存在锁对象,就需要判断该锁对象是否锁住了 gap。如果 gap 被锁住了,则插入意向锁与之冲突,进入等待状态(插入意向锁之间并不互斥)。总结一下这把锁的属性:

1. 它不会阻塞其他任何锁;

2. 它本身仅会被 gap lock 阻塞。

在学习 MySQL 过程中,一般只有在它被阻塞的时候才能观察到,所以这也是它常常被忽略的原因吧...

GAP LOCK

在此例中,另外一个重要的点就是 gap lock,通常情况下我们说到 gap lock 都只会联想到 REPEATABLE-READ 隔离级别利用其解决幻读。但实际上在 READ-COMMITTED 隔离级别,也会存在 gap lock ,只发生在:唯一约束检查到有唯一冲突的时候,会加 S Next-key Lock,即对记录以及与和上一条记录之间的间隙加共享锁。

通过下面这个例子就能验证:

请点击输入图片描述

这里 session1 插入数据遇到唯一冲突,虽然报错,但是对 (15,20] 加的 S Next-Key Lock 并不会马上释放,所以 session2 被阻塞。另外一种情况就是本文开始的例子,当 session2 插入遇到唯一冲突但是因为被 X Lock 阻塞,并不会立刻报错 “Duplicate key”,但是依然要等待获取 S Next-Key Lock 。

有个困惑很久的疑问:出现唯一冲突需要加 S Next-Key Lock 是事实,但是加锁的意义是什么?还是说是通过 S Next-Key Lock 来实现的唯一约束检查,但是这样意味着在插入没有遇到唯一冲突的时候,这个锁会立刻释放,这不符合二阶段锁原则。这点希望能与大家一起讨论得到好的解释。

如果是在 REPEATABLE-READ,除以上所说的唯一约束冲突外,gap lock 的存在是这样的:

普通索引(非唯一索引)的S/X Lock,都带 gap 属性,会锁住记录以及前1条记录到后1条记录的左闭右开区间,比如有[4,6,8]记录,delete 6,则会锁住[4,8)整个区间。

对于 gap lock,相信 DBA 们的心情是一样一样的,所以我的建议是:

1. 在绝大部分的业务场景下,都可以把 MySQL 的隔离界别设置为 READ-COMMITTED;

2. 在业务方便控制字段值唯一的情况下,尽量减少表中唯一索引的数量。

锁冲突矩阵

前面我们说的 GAP LOCK 其实是锁的属性,另外我们知道 InnoDB 常规锁模式有:S 和 X,即共享锁和排他锁。锁模式和锁属性是可以随意组合的,组合之后的冲突矩阵如下,这对我们分析死锁很有帮助:

请点击输入图片描述


当前名称:mysql怎么使用gap 如何使用mysql
链接URL:http://ybzwz.com/article/dodpcip.html