python分段函数绘图 Python画分段函数
python绘图中有哪四个绘图技巧
pre{overflow-x: auto}
润州网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、响应式网站设计等网站项目制作,到程序开发,运营维护。创新互联自2013年起到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。
技巧1: plt.subplots()
技巧2: plt.subplot()
技巧3: plt.tight_layout()
技巧4: plt.suptitle()
数据集:
让我们导入包并更新图表的默认设置,为图表添加一点个人风格。 我们将在提示上使用 Seaborn 的内置数据集:
import seaborn as sns # v0.11.2 import matplotlib.pyplot as plt # v3.4.2 sns.set(style='darkgrid', context='talk', palette='rainbow')df = sns.load\_dataset('tips') df.head()
技巧1: plt.subplots()
绘制多个子图的一种简单方法是使用 plt.subplots() 。
这是绘制 2 个并排子图的示例语法:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4)) sns.histplot(data=df, x='tip', ax=ax[0]) sns.boxplot(data=df, x='tip', ax=ax[1]);
在这里,我们在一个图中绘制了两个子图。 我们可以进一步自定义每个子图。
例如,我们可以像这样为每个子图添加标题:
fig, ax = plt.subplots(1, 2, figsize=(10,4)) sns.histplot(data=df, x='tip', ax=ax[0]) ax[0].set\_title("Histogram") sns.boxplot(data=df, x='tip', ax=ax[1]) ax[1].set\_title("Boxplot");
在循环中将所有数值变量用同一组图表示:
numerical = df.select\_dtypes('number').columnsfor col in numerical: fig, ax = plt.subplots(1, 2, figsize=(10,4)) sns.histplot(data=df, x=col, ax=ax[0]) sns.boxplot(data=df, x=col, ax=ax[1]); 技巧2: plt.subplot()
另一种可视化多个图形的方法是使用 plt.subplot(), 末尾没有 s
语法与之前略有不同:
plt.figure(figsize=(10,4)) ax1 = plt.subplot(1,2,1) sns.histplot(data=df, x='tip', ax=ax1) ax2 = plt.subplot(1,2,2) sns.boxplot(data=df, x='tip', ax=ax2);
当我们想为多个图绘制相同类型的图形并在单个图中查看所有图形,该方法特别有用:
plt.figure(figsize=(14,4)) for i, col in enumerate(numerical): ax = plt.subplot(1, len(numerical), i+1) sns.boxplot(data=df, x=col, ax=ax)
我们同样能定制子图形。例如加个 title
plt.figure(figsize=(14,4)) for i, col in enumerate(numerical): ax = plt.subplot(1, len(numerical), i+1) sns.boxplot(data=df, x=col, ax=ax) ax.set\_title(f"Boxplot of {col}")
通过下面的比较,我们能更好的理解它们的相似处与不同处熟悉这两种方法很有用,因为它们可以在不同情况下派上用场。
技巧3: plt.tight_layout()
在绘制多个图形时,经常会看到一些子图的标签在它们的相邻子图上重叠,
如下所示:
categorical = df.select\_dtypes('category').columnsplt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax)
顶部两个图表的 x 轴上的变量名称被剪掉,右侧图的 y 轴标签与左侧子图重叠.使用 plt.tight_layout 很方便
plt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax) plt.tight\_layout()
专业 看起来更好了。
技巧4: plt.suptitle()
真个图形添加标题:
plt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax) plt.suptitle('Category counts for all categorical variables') plt.tight\_layout()
此外,您可以根据自己的喜好自定义各个图。 例如,您仍然可以为每个子图添加标题。
到此这篇关于python绘图 四个绘图技巧的文章就介绍到这了,希望大家以后多多支持!
python编程这个怎么弄?
分段函数的代码用python实现如下:
x=eval(input('输入x的值:'))
if x!=0:
y=1/(2*x-1)
else:
y=0
print(y)
如何用python matplotlab 画出一个分段函数
几个绘图的例子,来自API手册:
1、最简单的图:
代码:
[python] view plain copy print?
#!/usr/bin/env python
import matplotlib.pyplot as plt
plt.plot([10, 20, 30])
plt.xlabel('tiems')
plt.ylabel('numbers')
plt.show()
python两个函数图像怎么分开画而且加表格
一、函数说明
在使用python作图时,应用最广的就是matplotlib包,但我们平时使用matplotlib时主要是画一些简单的图表,很少有涉及分段函数。本次针对数值实验中两个较为复杂的函数,使用其构建分段函数图像。
二、图像代码
2.11、函数公式:
y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t)
2.12、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def sgn(x):
if x0:
return 1
elif x0:
return -1
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=4*np.sin(4*np.pi*i)-sgn(i-0.3)-sgn(0.72-i)
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("Heavsine")
plt.show()
2.13、运行结果如下:
81036331d721706ae12808beb99b9574.png
2.21、函数公式:
479029.html
2.22、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def g(x):
if x0:
return x
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=g(i*(1-i))*np.sin((2*np.pi*1.05)/(i+0.05))
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("TimeSine")
plt.show()
文章名称:python分段函数绘图 Python画分段函数
转载来源:http://ybzwz.com/article/dodosps.html