iris函数python iris's

python load Iris.data数据集出现报错的问题

首先标注一下报错内容:

在汝城等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站设计制作、成都网站制作 网站设计制作定制网站设计,公司网站建设,企业网站建设,成都品牌网站建设,成都全网营销推广,成都外贸网站建设公司,汝城网站建设费用合理。

报错key words: b'Iris-setosa'

通过搜索原因,发现有可能是在对文件读取是编译出现了问题,并且Keyword中提示b'Iris-setosa',而我们的string转float函数中没有字母b,很奇怪。所以尝试将转换函数所有的string前加b。结果发现数据读取正常。

下边附上转换函数:

-markdown用的还不熟,怎么转换字体颜色啊,强迫症要犯了Face with Tears of Joy。

用python实现红酒数据集的ID3,C4.5和CART算法?

ID3算法介绍

ID3算法全称为迭代二叉树3代算法(Iterative Dichotomiser 3)

该算法要先进行特征选择,再生成决策树,其中特征选择是基于“信息增益”最大的原则进行的。

但由于决策树完全基于训练集生成的,有可能对训练集过于“依赖”,即产生过拟合现象。因此在生成决策树后,需要对决策树进行剪枝。剪枝有两种形式,分别为前剪枝(Pre-Pruning)和后剪枝(Post-Pruning),一般采用后剪枝。

信息熵、条件熵和信息增益

信息熵:来自于香农定理,表示信息集合所含信息的平均不确定性。信息熵越大,表示不确定性越大,所含的信息量也就越大。

设x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x

1

,x

2

,x

3

,...x

n

为信息集合X的n个取值,则x i x_ix

i

的概率:

P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n

P(X=i)=p

i

,i=1,2,3,...,n

信息集合X的信息熵为:

H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}

H(X)=−

i=1

n

p

i

logp

i

条件熵:指已知某个随机变量的情况下,信息集合的信息熵。

设信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y

1

,y

2

,y

3

,...y

m

组成的随机变量集合Y,则随机变量(X,Y)的联合概率分布为

P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}

P(x=i,y=j)=p

ij

条件熵:

H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}

H(X∣Y)=

j=1

m

p(y

j

)H(X∣y

j

)

H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}

H(X∣y

j

)=−

j=1

m

p(y

j

)

i=1

n

p(x

i

∣y

j

)logp(x

i

∣y

j

)

和贝叶斯公式:

p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)

p(x

i

y

j

)=p(x

i

∣y

j

)p(y

j

)

可以化简条件熵的计算公式为:

H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ⁡ p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}

H(X∣Y)=

j=1

m

i=1

n

p(x

i

,y

j

)log

p(x

i

,y

j

)

p(x

i

)

信息增益:信息熵-条件熵,用于衡量在知道已知随机变量后,信息不确定性减小越大。

d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)

d(X,Y)=H(X)−H(X∣Y)

python代码实现

import numpy as np

import math

def calShannonEnt(dataSet):

""" 计算信息熵 """

labelCountDict = {}

for d in dataSet:

label = d[-1]

if label not in labelCountDict.keys():

labelCountDict[label] = 1

else:

labelCountDict[label] += 1

entropy = 0.0

for l, c in labelCountDict.items():

p = 1.0 * c / len(dataSet)

entropy -= p * math.log(p, 2)

return entropy

def filterSubDataSet(dataSet, colIndex, value):

"""返回colIndex特征列label等于value,并且过滤掉改特征列的数据集"""

subDataSetList = []

for r in dataSet:

if r[colIndex] == value:

newR = r[:colIndex]

newR = np.append(newR, (r[colIndex + 1:]))

subDataSetList.append(newR)

return np.array(subDataSetList)

def chooseFeature(dataSet):

""" 通过计算信息增益选择最合适的特征"""

featureNum = dataSet.shape[1] - 1

entropy = calShannonEnt(dataSet)

bestInfoGain = 0.0

bestFeatureIndex = -1

for i in range(featureNum):

uniqueValues = np.unique(dataSet[:, i])

condition_entropy = 0.0

for v in uniqueValues: #计算条件熵

subDataSet = filterSubDataSet(dataSet, i, v)

p = 1.0 * len(subDataSet) / len(dataSet)

condition_entropy += p * calShannonEnt(subDataSet)

infoGain = entropy - condition_entropy #计算信息增益

if infoGain = bestInfoGain: #选择最大信息增益

bestInfoGain = infoGain

bestFeatureIndex = i

return bestFeatureIndex

def creatDecisionTree(dataSet, featNames):

""" 通过训练集生成决策树 """

featureName = featNames[:] # 拷贝featNames,此处不能直接用赋值操作,否则新变量会指向旧变量的地址

classList = list(dataSet[:, -1])

if len(set(classList)) == 1: # 只有一个类别

return classList[0]

if dataSet.shape[1] == 1: #当所有特征属性都利用完仍然无法判断样本属于哪一类,此时归为该数据集中数量最多的那一类

return max(set(classList), key=classList.count)

bestFeatureIndex = chooseFeature(dataSet) #选择特征

bestFeatureName = featNames[bestFeatureIndex]

del featureName[bestFeatureIndex] #移除已选特征列

decisionTree = {bestFeatureName: {}}

featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已选特征列所包含的类别, 通过递归生成决策树

for v in featureValueUnique:

copyFeatureName = featureName[:]

subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)

decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, copyFeatureName)

return decisionTree

def classify(decisionTree, featnames, featList):

""" 使用训练所得的决策树进行分类 """

classLabel = None

root = decisionTree.keys()[0]

firstGenDict = decisionTree[root]

featIndex = featnames.index(root)

for k in firstGenDict.keys():

if featList[featIndex] == k:

if isinstance(firstGenDict[k], dict): #若子节点仍是树,则递归查找

classLabel = classify(firstGenDict[k], featnames, featList)

else:

classLabel = firstGenDict[k]

return classLabel

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

下面用鸢尾花数据集对该算法进行测试。由于ID3算法只能用于标称型数据,因此用在对连续型的数值数据上时,还需要对数据进行离散化,离散化的方法稍后说明,此处为了简化,先使用每一种特征所有连续性数值的中值作为分界点,小于中值的标记为1,大于中值的标记为0。训练1000次,统计准确率均值。

from sklearn import datasets

from sklearn.model_selection import train_test_split

iris = datasets.load_iris()

data = np.c_[iris.data, iris.target]

scoreL = []

for i in range(1000): #对该过程进行10000次

trainData, testData = train_test_split(data) #区分测试集和训练集

featNames = iris.feature_names[:]

for i in range(trainData.shape[1] - 1): #对训练集每个特征,以中值为分界点进行离散化

splitPoint = np.mean(trainData[:, i])

featNames[i] = featNames[i]+'='+'{:.3f}'.format(splitPoint)

trainData[:, i] = [1 if x = splitPoint else 0 for x in trainData[:, i]]

testData[:, i] = [1 if x = splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)

classifyLable = [classify(decisionTree, featNames, td) for td in testData]

scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

print 'score: ', np.mean(scoreL)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

输出结果为:score: 0.7335,即准确率有73%。每次训练和预测的准确率分布如下:

数据离散化

然而,在上例中对特征值离散化的划分点实际上过于“野蛮”,此处介绍一种通过信息增益最大的标准来对数据进行离散化。原理很简单,当信息增益最大时,说明用该点划分能最大程度降低数据集的不确定性。

具体步骤如下:

对每个特征所包含的数值型特征值排序

对相邻两个特征值取均值,这些均值就是待选的划分点

用每一个待选点把该特征的特征值划分成两类,小于该特征点置为1, 大于该特征点置为0,计算此时的条件熵,并计算出信息增益

选择信息使信息增益最大的划分点进行特征离散化

实现代码如下:

def filterRawData(dataSet, colIndex, value, tag):

""" 用于把每个特征的连续值按照区分点分成两类,加入tag参数,可用于标记筛选的是哪一部分数据"""

filterDataList = []

for r in dataSet:

if (tag and r[colIndex] = value) or ((not tag) and r[colIndex] value):

newR = r[:colIndex]

newR = np.append(newR, (r[colIndex + 1:]))

filterDataList.append(newR)

return np.array(filterDataList)

def dataDiscretization(dataSet, featName):

""" 对数据每个特征的数值型特征值进行离散化 """

featureNum = dataSet.shape[1] - 1

entropy = calShannonEnt(dataSet)

for featIndex in range(featureNum): #对于每一个特征

uniqueValues = sorted(np.unique(dataSet[:, featIndex]))

meanPoint = []

for i in range(len(uniqueValues) - 1): # 求出相邻两个值的平均值

meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)

bestInfoGain = 0.0

bestMeanPoint = -1

for mp in meanPoint: #对于每个划分点

subEntropy = 0.0 #计算该划分点的信息熵

for tag in range(2): #分别划分为两类

subDataSet = filterRawData(dataSet, featIndex, mp, tag)

p = 1.0 * len(subDataSet) / len(dataSet)

subEntropy += p * calShannonEnt(subDataSet)

## 计算信息增益

infoGain = entropy - subEntropy

## 选择最大信息增益

if infoGain = bestInfoGain:

bestInfoGain = infoGain

bestMeanPoint = mp

featName[featIndex] = featName[featIndex] + "=" + "{:.3f}".format(bestMeanPoint)

dataSet[:, featIndex] = [1 if x = bestMeanPoint else 0 for x in dataSet[:, featIndex]]

return dataSet, featName

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

重新对数据进行离散化,并重复该步骤1000次,同时用sklearn中的DecisionTreeClassifier对相同数据进行分类,分别统计平均准确率。运行代码如下:

from sklearn.tree import DecisionTreeClassifier

import matplotlib.pyplot as plt

scoreL = []

scoreL_sk = []

for i in range(1000): #对该过程进行1000次

featNames = iris.feature_names[:]

trainData, testData = train_test_split(data) #区分测试集和训练集

trainData_tmp = copy.copy(trainData)

testData_tmp = copy.copy(testData)

discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根据信息增益离散化

for i in range(testData.shape[1]-1): #根据测试集的区分点离散化训练集

splitPoint = float(discritizationFeatName[i].split('=')[-1])

testData[:, i] = [1 if x=splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)

classifyLable = [classify(decisionTree, featNames, td) for td in testData]

scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

clf = DecisionTreeClassifier('entropy')

clf.fit(trainData[:, :-1], trainData[:, -1])

clf.predict(testData[:, :-1])

scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))

print 'score: ', np.mean(scoreL)

print 'score-sk: ', np.mean(scoreL_sk)

fig = plt.figure(figsize=(10, 4))

plt.subplot(1,2,1)

pd.Series(scoreL).hist(grid=False, bins=10)

plt.subplot(1,2,2)

pd.Series(scoreL_sk).hist(grid=False, bins=10)

plt.show()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

两者准确率分别为:

score: 0.7037894736842105

score-sk: 0.7044736842105263

准确率分布如下:

两者的结果非常一样。

(但是。。为什么根据信息熵离散化得到的准确率比直接用均值离散化的准确率还要低啊??哇的哭出声。。)

最后一次决策树图形如下:

决策树剪枝

由于决策树是完全依照训练集生成的,有可能会有过拟合现象,因此一般会对生成的决策树进行剪枝。常用的是通过决策树损失函数剪枝,决策树损失函数表示为:

C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|

C

a

(T)=

t=1

T

N

t

H

t

(T)+α∣T∣

其中,H t ( T ) H_t(T)H

t

(T)表示叶子节点t的熵值,T表示决策树的深度。前项∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑

t=1

T

N

t

H

t

(T)是决策树的经验损失函数当随着T的增加,该节点被不停的划分的时候,熵值可以达到最小,然而T的增加会使后项的值增大。决策树损失函数要做的就是在两者之间进行平衡,使得该值最小。

对于决策树损失函数的理解,如何理解决策树的损失函数? - 陶轻松的回答 - 知乎这个回答写得挺好,可以按照答主的思路理解一下

C4.5算法

ID3算法通过信息增益来进行特征选择会有一个比较明显的缺点:即在选择的过程中该算法会优先选择类别较多的属性(这些属性的不确定性小,条件熵小,因此信息增益会大),另外,ID3算法无法解决当每个特征属性中每个分类都只有一个样本的情况(此时每个属性的条件熵都为0)。

C4.5算法ID3算法的改进,它不是依据信息增益进行特征选择,而是依据信息增益率,它添加了特征分裂信息作为惩罚项。定义分裂信息:

S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ⁡ ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}

SplitInfo(X,Y)=−

i

n

∣X∣

∣X

i

log

∣X∣

∣X

i

则信息增益率为:

G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}

GainRatio(X,Y)=

SplitInfo(X,Y)

d(X,Y)

关于ID3和C4.5算法

在学习分类回归决策树算法时,看了不少的资料和博客。关于这两个算法,ID3算法是最早的分类算法,这个算法刚出生的时候其实带有很多缺陷:

无法处理连续性特征数据

特征选取会倾向于分类较多的特征

没有解决过拟合的问题

没有解决缺失值的问题

即该算法出生时是没有带有连续特征离散化、剪枝等步骤的。C4.5作为ID3的改进版本弥补列ID3算法不少的缺陷:

通过信息最大增益的标准离散化连续的特征数据

在选择特征是标准从“最大信息增益”改为“最大信息增益率”

通过加入正则项系数对决策树进行剪枝

对缺失值的处理体现在两个方面:特征选择和生成决策树。初始条件下对每个样本的权重置为1。

特征选择:在选取最优特征时,计算出每个特征的信息增益后,需要乘以一个**“非缺失值样本权重占总样本权重的比例”**作为系数来对比每个特征信息增益的大小

生成决策树:在生成决策树时,对于缺失的样本我们按照一定比例把它归属到每个特征值中,比例为该特征每一个特征值占非缺失数据的比重

关于C4.5和CART回归树

作为ID3的改进版本,C4.5克服了许多缺陷,但是它自身还是存在不少问题:

C4.5的熵运算中涉及了对数运算,在数据量大的时候效率非常低。

C4.5的剪枝过于简单

C4.5只能用于分类运算不能用于回归

当特征有多个特征值是C4.5生成多叉树会使树的深度加深

————————————————

版权声明:本文为CSDN博主「Sarah Huang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:

python iris数据集在哪

from sklearn.datasets import load_iris

iris = load_iris()

print(iris.keys())

n_samples, n_features = iris.data.shape

print((n_samples, n_features))

print(iris.data[0])

print(iris.target.shape)

print(iris.target)

print(iris.target_names)

print("feature_names:",iris.feature_names)

sklearn中的iris数据集有5个key:

[‘target_names’, ‘data’, ‘target’, ‘DESCR’, ‘feature_names’]

(150L, 4L)

data[0]:[ 5.1 3.5 1.4 0.2]

(‘feature_names:’, [‘sepal length (cm)’, ‘sepal width (cm)’, ‘petal length (cm)’, ‘petal width (cm)’])

(150L,)

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2]

[‘setosa’ ‘versicolor’ ‘virginica’]

target_names : 分类名称

target:分类(150个)

feature_names: 特征名称

data : 特征值

如何用python实现随机森林分类

大家如何使用scikit-learn包中的类方法来进行随机森林算法的预测。其中讲的比较好的是各个参数的具体用途。

这里我给出我的理解和部分翻译:

参数说明:

最主要的两个参数是n_estimators和max_features。

n_estimators:表示森林里树的个数。理论上是越大越好。但是伴随着就是计算时间的增长。但是并不是取得越大就会越好,预测效果最好的将会出现在合理的树个数。

max_features:随机选择特征集合的子集合,并用来分割节点。子集合的个数越少,方差就会减少的越快,但同时偏差就会增加的越快。根据较好的实践经验。如果是回归问题则:

max_features=n_features,如果是分类问题则max_features=sqrt(n_features)。

如果想获取较好的结果,必须将max_depth=None,同时min_sample_split=1。

同时还要记得进行cross_validated(交叉验证),除此之外记得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。

这里也给出一篇老外写的文章:调整你的随机森林模型参数 

这里我使用了scikit-learn自带的iris数据来进行随机森林的预测:

[python] view plain copy

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

import numpy as np

from sklearn.datasets import load_iris

iris=load_iris()

#print iris#iris的4个属性是:萼片宽度 萼片长度 花瓣宽度 花瓣长度 标签是花的种类:setosa versicolour virginica

print iris['target'].shape

rf=RandomForestRegressor()#这里使用了默认的参数设置

rf.fit(iris.data[:150],iris.target[:150])#进行模型的训练

#

#随机挑选两个预测不相同的样本

instance=iris.data[[100,109]]

print instance

print 'instance 0 prediction;',rf.predict(instance[0])

print 'instance 1 prediction;',rf.predict(instance[1])

print iris.target[100],iris.target[109]

返回的结果如下:

(150,)

[[ 6.3  3.3  6.   2.5]

[ 7.2  3.6  6.1  2.5]]

instance 0 prediction; [ 2.]

instance 1 prediction; [ 2.]

2 2

在这里我有点困惑,就是在scikit-learn算法包中随机森林实际上就是一颗颗决策树组成的。但是之前我写的决策树博客中是可以将决策树给显示出来。但是随机森林却做了黑盒处理。我们不知道内部的决策树结构,甚至连父节点的选择特征都不知道是谁。所以我给出下面的代码(这代码不是我的原创),可以显示的显示出所有的特征的贡献。所以对于贡献不大的,甚至是负贡献的我们可以考虑删除这一列的特征值,避免做无用的分类。

[python] view plain copy

from sklearn.cross_validation import cross_val_score, ShuffleSplit

X = iris["data"]

Y = iris["target"]

names = iris["feature_names"]

rf = RandomForestRegressor()

scores = []

for i in range(X.shape[1]):

score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2",

cv=ShuffleSplit(len(X), 3, .3))

scores.append((round(np.mean(score), 3), names[i]))

print sorted(scores, reverse=True)

显示的结果如下:

[(0.934, 'petal width (cm)'), (0.929, 'petal length (cm)'), (0.597, 'sepal length (cm)'), (0.276, 'sepal width (cm)')]

这里我们会发现petal width、petal length这两个特征将起到绝对的贡献,之后是sepal length,影响最小的是sepal width。这段代码将会提示我们各个特征的贡献,可以让我们知道部分内部的结构。

python 怎么画与其他方法进行比较的ROC曲线?

使用sklearn的一系列方法后可以很方便的绘制处ROC曲线,这里简单实现以下。

主要是利用混淆矩阵中的知识作为绘制的数据(如果不是很懂可以先看看这里的基础):

tpr(Ture Positive Rate):真阳率 图像的纵坐标

fpr(False Positive Rate):阳率(伪阳率) 图像的横坐标

mean_tpr:累计真阳率求平均值

mean_fpr:累计阳率求平均值

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm, datasets

from sklearn.metrics import roc_curve, auc

from sklearn.model_selection import StratifiedKFold

iris = datasets.load_iris()

X = iris.data

y = iris.target

X, y = X[y != 2], y[y != 2] # 去掉了label为2,label只能二分,才可以。

n_samples, n_features = X.shape

# 增加噪声特征

random_state = np.random.RandomState(0)

X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

cv = StratifiedKFold(n_splits=6) #导入该模型,后面将数据划分6份

classifier = svm.SVC(kernel='linear', probability=True,random_state=random_state) # SVC模型 可以换作AdaBoost模型试试

# 画平均ROC曲线的两个参数

mean_tpr = 0.0 # 用来记录画平均ROC曲线的信息

mean_fpr = np.linspace(0, 1, 100)

cnt = 0

for i, (train, test) in enumerate(cv.split(X,y)): #利用模型划分数据集和目标变量 为一一对应的下标

cnt +=1

probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # 训练模型后预测每条样本得到两种结果的概率

fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) # 该函数得到伪正例、真正例、阈值,这里只使用前两个

mean_tpr += np.interp(mean_fpr, fpr, tpr) # 插值函数 interp(x坐标,每次x增加距离,y坐标) 累计每次循环的总值后面求平均值

mean_tpr[0] = 0.0 # 将第一个真正例=0 以0为起点

roc_auc = auc(fpr, tpr) # 求auc面积

plt.plot(fpr, tpr, lw=1, label='ROC fold {0:.2f} (area = {1:.2f})'.format(i, roc_auc)) # 画出当前分割数据的ROC曲线

plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') # 画对角线

mean_tpr /= cnt # 求数组的平均值

mean_tpr[-1] = 1.0 # 坐标最后一个点为(1,1) 以1为终点

mean_auc = auc(mean_fpr, mean_tpr)

plt.plot(mean_fpr, mean_tpr, 'k--',label='Mean ROC (area = {0:.2f})'.format(mean_auc), lw=2)

plt.xlim([-0.05, 1.05]) # 设置x、y轴的上下限,设置宽一点,以免和边缘重合,可以更好的观察图像的整体

plt.ylim([-0.05, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate') # 可以使用中文,但需要导入一些库即字体

plt.title('Receiver operating characteristic example')

plt.legend(loc="lower right")

plt.show()


本文标题:iris函数python iris's
浏览地址:http://ybzwz.com/article/dodehod.html