使用python实现AES加密解密的案例-创新互联
小编给大家分享一下使用python实现AES加密解密的案例,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
成都创新互联专注于胶州企业网站建设,响应式网站开发,成都做商城网站。胶州网站建设公司,为胶州等地区提供建站服务。全流程按需定制开发,专业设计,全程项目跟踪,成都创新互联专业和态度为您提供的服务具体内容如下
(1)对于AES加密解密相关知识
(2)实现的功能就是输入0-16个字符,然后经过AES的加密解密最后可以得到原先的输入,运行的结果如下
开始的字符串就是输入的明文,第一个矩阵,是明文对应的状态矩阵,下面的字典是得到的经过扩展后的密钥,再下面的矩阵是经过加密之后的矩阵,最后的矩阵就是解密之后的矩阵,最后的输出就是还原的明文,可以发现AES加密解密的过程没毛病。
(3)字节代换:输入输出都是十六进制的矩阵格式,define_byte_subdtitution()函数的功能是完成字节代换,首先使用hex_to_int_number()函数将十六进制数转换为对应的十进制数,然后到S盒与逆S盒中进行字节的代换,这个过程中比较麻烦的是S盒与逆S盒数据的输入,好家伙。而逆字节代换就是使用逆S盒;
(4)行移位:输入输出都是十六进制的矩阵格式,define_line_shift()函数是在加密时使用的,define_line_inverse_shift()函数是在解密时使用的;
(5)列混合:输入是使用的十进制矩阵,输出是十六进制的矩阵,在列混合前为了方便操作,使用函数define_column_rotation()将矩阵进行了行列交换位置,然后对每一个数据进行操作,get_2()函数是实现与2相乘的结果,在加密与解密中会多次用到,XOR()函数实现两个二进制数的异或操作,在逆列混合中就是左乘的矩阵有所不同;
(6)轮密钥加:输入输出都是十六进制的矩阵格式,在进行加密解密之前先将密钥进行扩展,得到加解密过程中使用的所有的密钥,并放在一个字典中,然后在加密解密过程中使用相应的密钥即可,get_extend_key()函数得到扩展密钥,一共有44个字,每次在进行轮密钥加时使用4个字,get_round_key_plus()函数实现轮密钥加的操作,就是进行异或操作;
(7)最后就是实现加密与解密的详细的过程,其中的九轮是一样的,最后一轮单独拿出来进行处理即可,主要的问题可能会出现在一些小细节的处理上,像我遇到的就是在解密中控制使用轮密钥的变量k,开始把k放在了10轮循环中,导致k的值一直是初值没有改变,所以加密解密没有成功,之后我就在各个步骤中一个一个的测试,发现字节代换,行移位,列混合,甚至轮密钥加单独使用的时候都可以实现还原明文,然后,我又仔细的检查了下,加密解密的函数,终于发现了这个问题,问题虽小,但是影响很大,使得整个的程序没有得到预想的结果,幸好最后的结局还算满意,就是写的代码有点乱,自己也懒得改了,希望有大佬要是有什么意见,可以随时交流。
import random def get_matrix_of_clear_number(clear_number): #得到输入数据对应的十六进制ASCII码矩阵 dir = {0:[], 1:[], 2:[], 3:[]} length = len(clear_number) for i in range(length): number = ord(clear_number[i]) dir[i % 4].append(hex(number)) return dir def get_matrix_of_cipher_number(): #得到随机生成的密钥的十六进制矩阵 dir_number = {10:"A", 11:"B", 12:"C", 13:"D", 14:"E", 15:"F"} string = '' for i in range(16): number = int(random.random() * 16) if(number >= 10): number = dir_number[number] else: number = str(number) string = string + number dir = get_matrix_of_clear_number(string) return dir def define_S_box(fir_num, last_num): #定义S盒 dir = { 0:['0x63', '0x7c', '0x77', '0x7b', '0xf2', '0x6b', '0x6f', '0xc5', '0x30', '0x01', '0x67', '0x2b', '0xfe', '0xd7', '0xab', '0x76'], 1:['0xca', '0x82', '0xc9', '0x7d', '0xfa', '0x59', '0x47', '0xf0', '0xad', '0xd4', '0xa2', '0xaf', '0x9c', '0xa4', '0x72', '0xc0'], 2:['0xb7', '0xfd', '0x93', '0x26', '0x36', '0x3f', '0xf7', '0xcc', '0x34', '0xa5', '0xe5', '0xf1', '0x71', '0xd8', '0x31', '0x15'], 3:['0x04', '0xc7', '0x23', '0xc3', '0x18', '0x96', '0x05', '0x9a', '0x07', '0x12', '0x80', '0xe2', '0xeb', '0x27', '0xb2', '0x75'], 4:['0x09', '0x83', '0x2c', '0x1a', '0x1b', '0x6e', '0x5a', '0xa0', '0x52', '0x3b', '0xd6', '0xb3', '0x29', '0xe3', '0x2f', '0x84'], 5:['0x53', '0xd1', '0x00', '0xed', '0x20', '0xfc', '0xb1', '0x5b', '0x6a', '0xcb', '0xbe', '0x39', '0x4a', '0x4c', '0x58', '0xcf'], 6:['0xd0', '0xef', '0xaa', '0xfb', '0x43', '0x4d', '0x33', '0x85', '0x45', '0xf9', '0x02', '0x7f', '0x50', '0x3c', '0x9f', '0xa8'], 7:['0x51', '0xa3', '0x40', '0x8f', '0x92', '0x9d', '0x38', '0xf5', '0xbc', '0xb6', '0xda', '0x21', '0x10', '0xff', '0xf3', '0xd2'], 8:['0xcd', '0x0c', '0x13', '0xec', '0x5f', '0x97', '0x44', '0x17', '0xc4', '0xa7', '0x7e', '0x3d', '0x64', '0x5d', '0x19', '0x73'], 9:['0x60', '0x81', '0x4f', '0xdc', '0x22', '0x2a', '0x90', '0x88', '0x46', '0xee', '0xb8', '0x14', '0xde', '0x5e', '0x0b', '0xdb'], 10:['0xe0', '0x32', '0x3a', '0x0a', '0x49', '0x06', '0x24', '0x5c', '0xc2', '0xd3', '0xac', '0x62', '0x91', '0x95', '0xe4', '0x79'], 11:['0xe7', '0xc8', '0x37', '0x6d', '0x8d', '0xd5', '0x4e', '0xa9', '0x6c', '0x56', '0xf4', '0xea', '0x65', '0x7a', '0xae', '0x08'], 12:['0xba', '0x78', '0x25', '0x2e', '0x1c', '0xa6', '0xb4', '0xc6', '0xe8', '0xdd', '0x74', '0x1f', '0x4b', '0xbd', '0x8b', '0x8a'], 13:['0x70', '0x3e', '0xb5', '0x66', '0x48', '0x03', '0xf6', '0x0e', '0x61', '0x35', '0x57', '0xb9', '0x86', '0xc1', '0x1d', '0x9e'], 14:['0xe1', '0xf8', '0x98', '0x11', '0x69', '0xd9', '0x8e', '0x94', '0x9b', '0x1e', '0x87', '0xe9', '0xce', '0x55', '0x28', '0xdf'], 15:['0x8c', '0xa1', '0x89', '0x0d', '0xbf', '0xe6', '0x42', '0x68', '0x41', '0x99', '0x2d', '0x0f', '0xb0', '0x54', '0xbb', '0x16'] } return (dir[fir_num][last_num]) def define_inverse_S_box(fir_num, last_num): #定义S逆盒 dir = { 0:['0x52', '0x09', '0x6a', '0xd5', '0x30', '0x36', '0xa5', '0x38', '0xbf', '0x40', '0xa3', '0x9e', '0x81', '0xf3', '0xd7', '0xfb'], 1:['0x7c', '0xe3', '0x39', '0x82', '0x9b', '0x2f', '0xff', '0x87', '0x34', '0x8e', '0x43', '0x44', '0xc4', '0xde', '0xe9', '0xcb'], 2:['0x54', '0x7b', '0x94', '0x32', '0xa6', '0xc2', '0x23', '0x3d', '0xee', '0x4c', '0x95', '0x0b', '0x42', '0xfa', '0xc3', '0x4e'], 3:['0x08', '0x2e', '0xa1', '0x66', '0x28', '0xd9', '0x24', '0xb2', '0x76', '0x5b', '0xa2', '0x49', '0x6d', '0x8b', '0xd1', '0x25'], 4:['0x72', '0xf8', '0xf6', '0x64', '0x86', '0x68', '0x98', '0x16', '0xd4', '0xa4', '0x5c', '0xcc', '0x5d', '0x65', '0xb6', '0x92'], 5:['0x6c', '0x70', '0x48', '0x50', '0xfd', '0xed', '0xb9', '0xda', '0x5e', '0x15', '0x46', '0x57', '0xa7', '0x8d', '0x9d', '0x84'], 6:['0x90', '0xd8', '0xab', '0x00', '0x8c', '0xbc', '0xd3', '0x0a', '0xf7', '0xe4', '0x58', '0x05', '0xb8', '0xb3', '0x45', '0x06'], 7:['0xd0', '0x2c', '0x1e', '0x8f', '0xca', '0x3f', '0x0f', '0x02', '0xc1', '0xaf', '0xbd', '0x03', '0x01', '0x13', '0x8a', '0x6b'], 8:['0x3a', '0x91', '0x11', '0x41', '0x4f', '0x67', '0xdc', '0xea', '0x97', '0xf2', '0xcf', '0xce', '0xf0', '0xb4', '0xe6', '0x73'], 9:['0x96', '0xac', '0x74', '0x22', '0xe7', '0xad', '0x35', '0x85', '0xe2', '0xf9', '0x37', '0xe8', '0x1c', '0x75', '0xdf', '0x6e'], 10:['0x47', '0xf1', '0x1a', '0x71', '0x1d', '0x29', '0xc5', '0x89', '0x6f', '0xb7', '0x62', '0x0e', '0xaa', '0x18', '0xbe', '0x1b'], 11:['0xfc', '0x56', '0x3e', '0x4b', '0xc6', '0xd2', '0x79', '0x20', '0x9a', '0xdb', '0xc0', '0xfe', '0x78', '0xcd', '0x5a', '0xf4'], 12:['0x1f', '0xdd', '0xa8', '0x33', '0x88', '0x07', '0xc7', '0x31', '0xb1', '0x12', '0x10', '0x59', '0x27', '0x80', '0xec', '0x5f'], 13:['0x60', '0x51', '0x7f', '0xa9', '0x19', '0xb5', '0x4a', '0x0d', '0x2d', '0xe5', '0x7a', '0x9f', '0x93', '0xc9', '0x9c', '0xef'], 14:['0xa0', '0xe0', '0x3b', '0x4d', '0xae', '0x2a', '0xf5', '0xb0', '0xc8', '0xeb', '0xbb', '0x3c', '0x83', '0x53', '0x99', '0x61'], 15:['0x17', '0x2b', '0x04', '0x7e', '0xba', '0x77', '0xd6', '0x26', '0xe1', '0x69', '0x14', '0x63', '0x55', '0x21', '0x0c', '0x7d'] } return (dir[fir_num][last_num]) def hex_to_int_number(hex_num, flag): #十六进制矩阵转换为十进制矩阵 number = int(hex_num, 16) int_num = number // 16 int_re = number % 16 if flag == 1: my_number = define_S_box(int_num, int_re) else: my_number = define_inverse_S_box(int_num, int_re) return my_number def define_byte_subdtitution(dir_new_number, flag): #定义字节代换 dir_1 = {0:[], 1:[], 2:[], 3:[]} for j in range(4): list_new = [] list = dir_new_number[j] for k in range(4): new_num = hex_to_int_number(list[k], flag) list_new.append(new_num) dir_1[j] = list_new return dir_1 def define_line_shift(dir_clear_number): #进行行移位操作 for i in range(4): my_list = [] list = dir_clear_number[i] for j in range(4): my_list.append(list[(j + i) % 4]) dir_clear_number[i] = my_list return dir_clear_number def define_line_inverse_shift(dir_clear_number): #进行行移位的逆操作 for i in range(4): my_list = [] list = dir_clear_number[i] for j in range(4): my_list.append(list[(j + 4 - i) % 4]) dir_clear_number[i] = my_list return dir_clear_number def XOR(string_1, string_2): #得到异或后的十进制结果 decimal_result = 0 for i in range(8): if string_1[i] != string_2[i]: decimal_result += 2 ** (7 - i) return decimal_result def dex_to_int(string): #得到数据二进制到十进制的转换 my_result = 0 for k in range(8): if string[k] == '1': my_result += 2 ** (7 - k) return my_result def get_2(last_num): #得到列混合中乘以2的结果 last_num_copy = last_num last_num_copy = bin(last_num_copy)[2:].rjust(8, '0') judge_num = bin(last_num)[2:] judge_num = last_num_copy[0] last_num_copy = last_num_copy[1:] last_num_copy += '0' if judge_num == '1': string_judge = '00011011' last_num_copy = bin(XOR(string_judge, last_num_copy))[2:].rjust(8, '0') return last_num_copy def define_column_rotation(dir_clear_number_copy): #在列混合中先将列进行旋转 dir_clear_number = {0:[], 1:[], 2:[], 3:[]} for key, num in dir_clear_number_copy.items(): list = num for i in range(4): dir_clear_number[i].append(list[i]) return dir_clear_number def define_column_hybrid(dir_clear_number_copy): #进行列混合操作,得到对应的十六进制的矩阵 dir_matrix = { 0:[2, 3, 1, 1], 1:[1, 2, 3, 1], 2:[1, 1, 2, 3], 3:[3, 1, 1, 2] } dir_clear_number = define_column_rotation(dir_clear_number_copy) dir_new_clear_number = {0:[], 1:[], 2:[], 3:[]} for i in range(4): list_matrix = dir_matrix[i] list = [] for j in range(4): list_num = dir_clear_number[j] string = '' my_string = '00000000' for k in range(4): if list_matrix[k] == 2: string = get_2(list_num[k]) if list_matrix[k] == 3: string = get_2(list_num[k]) list_num_copy = bin(list_num[k])[2:].rjust(8, '0') string = bin(XOR(string, list_num_copy))[2:].rjust(8, '0') if list_matrix[k] == 1: string = bin(list_num[k])[2:].rjust(8, '0') my_string = bin(XOR(my_string, string))[2:].rjust(8, '0') my_result = dex_to_int(my_string) list.append(hex(my_result)) dir_new_clear_number[i] = list return dir_new_clear_number def define_inverse_column_hybrid(dir_clear_number_copy): #进行列混合逆操作,得到对应的十六进制的矩阵 dir_matrix = { 0:[14, 11, 13, 9], 1:[9, 14, 11, 13], 2:[13, 9, 14, 11], 3:[11, 13, 9, 14] } dir_clear_number = define_column_rotation(dir_clear_number_copy) dir_new_clear_number = {0:[], 1:[], 2:[], 3:[]} for i in range(4): list_matrix = dir_matrix[i] list = [] for j in range(4): list_num = dir_clear_number[j] string = '' my_string = '00000000' my_result = 0 for k in range(4): if list_matrix[k] == 14: string_1 = get_2(list_num[k]) string_1_int = dex_to_int(string_1) string_2 = get_2(string_1_int) string_2_int = dex_to_int(string_2) string_3 = get_2(string_2_int) string = bin(XOR(string_2, string_1))[2:].rjust(8, '0') string = bin(XOR(string, string_3))[2:].rjust(8, '0') if list_matrix[k] == 11: string_1 = get_2(list_num[k]) string_1_int = dex_to_int(string_1) string_2 = get_2(string_1_int) string_2_int = dex_to_int(string_2) string_3 = get_2(string_2_int) string_4 = bin(list_num[k])[2:].rjust(8, '0') string = bin(XOR(string_3, string_1))[2:].rjust(8, '0') string = bin(XOR(string, string_4))[2:].rjust(8, '0') if list_matrix[k] == 13: string_1 = get_2(list_num[k]) string_1_int = dex_to_int(string_1) string_2 = get_2(string_1_int) string_2_int = dex_to_int(string_2) string_3 = get_2(string_2_int) string_4 = bin(list_num[k])[2:].rjust(8, '0') string = bin(XOR(string_3, string_2))[2:].rjust(8, '0') string = bin(XOR(string, string_4))[2:].rjust(8, '0') if list_matrix[k] == 9: string_1 = get_2(list_num[k]) string_1_int = dex_to_int(string_1) string_2 = get_2(string_1_int) string_2_int = dex_to_int(string_2) string_3 = get_2(string_2_int) string_4 = bin(list_num[k])[2:].rjust(8, '0') string = bin(XOR(string_3, string_4))[2:].rjust(8, '0') my_string = bin(XOR(my_string, string))[2:].rjust(8, '0') my_result = dex_to_int(my_string) list.append(hex(my_result)) dir_new_clear_number[i] = list return dir_new_clear_number def hex_to_int(dir_clear_number): #将十六进制的矩阵转换为十进制的矩阵 dir_clear_number_copy = {0:[], 1:[], 2:[], 3:[]} for key, num in dir_clear_number.items(): list = [] for i in range(4): list.append(int(num[i], 16)) dir_clear_number_copy[key] = list return dir_clear_number_copy def get_4_double(i_num, num, dir_key): #在轮密钥加中 ,得到4的倍数 dir_R = { 1: ['01','00', '00', '00'], 2: ['02', '00', '00', '00'], 3: ['04', '00', '00', '00'], 4: ['08', '00', '00', '00'], 5: ['10', '00', '00', '00'], 6: ['20', '00', '00', '00'], 7: ['40', '00', '00', '00'], 8: ['80', '00', '00', '00'], 9: ['1B', '00', '00', '00'], 10: ['36', '00', '00', '00'] } list_R = dir_R[i_num // 4 + 1] list = [] list_dir = dir_key[num - 1] #print(list_dir) for i in range(4): list.append(list_dir[(i + 1) % 4]) for i in range(4): list_int = int(list[i], 16) line_number = list_int // 16 row_number = list_int % 16 list[i] = define_S_box(line_number, row_number) list_new = [] for i in range(4): num_1 = int(list_R[i], 16) num_2 = int(list[i], 16) string_1 = bin(num_1)[2:].rjust(8, '0') string_2 = bin(num_2)[2:].rjust(8, '0') string = XOR(string_1, string_2) list_new.append(hex(string)) return list_new def get_extend_key(dir_cipher_number): #得到扩展密钥 dir_cipher_number_copy = dir_cipher_number dir_key = {} for i in range(44): dir_key[i] = [] for j in range(4): list = [] list_dir = dir_cipher_number_copy[j] for k in range(4): list.append(list_dir[k]) dir_key[j] = list for i in range(40): num = 4 + i if num % 4 == 0: list_T = get_4_double(i, num, dir_key) else: list_T = dir_key[num - 1] list_key = dir_key[num - 4] list = [] for j in range(4): string_1 = bin(int(list_T[j], 16))[2:].rjust(8, '0') string_2 = bin(int(list_key[j], 16))[2:].rjust(8, '0') string = XOR(string_1, string_2) list.append(hex(string)) dir_key[4 + i] = list return dir_key def get_round_key_plus(clear_number, dir_key_extend): #进行轮密钥加的操作 dir_new_number = {0:[], 1:[], 2:[], 3:[]} for i in range(4): list_number = clear_number[i] list_key = dir_key_extend[i] list = [] for j in range(4): number = int(list_number[j], 16) key = int(list_key[j], 16) string_num = bin(number)[2:].rjust(8, '0') string_key = bin(key)[2:].rjust(8, '0') result_int = XOR(string_num, string_key) list.append(hex(result_int)) dir_new_number[i] = list return dir_new_number def define_encryption(clear_number, dir_key_extend): #对明文进行轮密钥加 dir_new_number = get_round_key_plus(clear_number, dir_key_extend) #进行中间的十轮运算 for i in range(10): num = 4 * (i + 1) dir_key_extend_part = {} for j in range(4): dir_key_extend_part[j] = dir_key_extend[num] num += 1 #字节代换 dir_1 = define_byte_subdtitution(dir_new_number, 1) #行移位 dir_1 = define_line_shift(dir_1) #定义列混合操作 if i != 9: dir_1 = hex_to_int(dir_1) dir_1 = define_column_hybrid(dir_1) #定义轮密钥加 dir_1 = get_round_key_plus(dir_1, dir_key_extend_part) dir_new_number = dir_1 return dir_new_number def define_decryption(clear_number, dir_key_extend): #对密文进行轮密钥加 dir_key_extend_part = { 0: dir_key_extend[40], 1: dir_key_extend[41], 2: dir_key_extend[42], 3: dir_key_extend[43] } dir_new_number = get_round_key_plus(clear_number, dir_key_extend_part) #进行中间的十轮运算 k = 9 for i in range(10): num = 4 * k dir_key_extend_part = {} for j in range(4): dir_key_extend_part[j] = dir_key_extend[num] num += 1 k -= 1 #逆行移位 dir_1 = define_line_inverse_shift(dir_new_number) #逆字节代换 dir_1 = define_byte_subdtitution(dir_1, 0) #定义轮密钥加 dir_1 = get_round_key_plus(dir_1, dir_key_extend_part) dir_new_number = dir_1 #定义逆列混合操作 if i != 9: dir_1 = hex_to_int(dir_1) dir_1 = define_inverse_column_hybrid(dir_1) dir_new_number = dir_1 return dir_new_number def print_(dir_num): #测试输出字典 for key, num in dir_num.items(): print(num) def get_outcome(dir_num): #输出解密之后的内容 dir_num = define_column_rotation(dir_num) string = '' for i in range(4): list_num = dir_num[i] for j in range(4): num = list_num[j] num = chr(int(num, 16)) string += num return string def get_standard_input(string): #得到16个字符的输入 length = len(string) length = 16 - length for i in range(length): string += '0' return string if __name__ == "__main__": print("Enter numbers( 0 - 16 number, if less than 16, it will fill with '0' by default): ") clear_number = input() clear_number = get_standard_input(clear_number) #得到明文矩阵 dir_clear_number = get_matrix_of_clear_number(clear_number) print_(dir_clear_number) #输出明文矩阵 print("\n") #得到密文矩阵 dir_cipher_number = get_matrix_of_cipher_number() #得到扩展的密钥 dir_key_extend = get_extend_key(dir_cipher_number) print(dir_key_extend) #输出扩展密钥 print("\n") dir_new_encrypt_number = define_encryption(dir_clear_number, dir_key_extend) print_(dir_new_encrypt_number) #输出密文矩阵 print("\n") dir_orinal_ = define_decryption(dir_new_encrypt_number, dir_key_extend) print_(dir_orinal_) #输出解密后的矩阵 dir_ = get_outcome(dir_orinal_) print(dir_) #输出解密后的原文
以上是“使用python实现AES加密解密的案例”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
分享文章:使用python实现AES加密解密的案例-创新互联
分享路径:http://ybzwz.com/article/dhepep.html