})参数说明:
mapreduce: 要操作的目标集合。
map: 映射函数 (生成键值对序列,作为 reduce 函数参数)。
reduce: 统计函数。
out: 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
query: 目标记录过滤
sort: 目标记录排序。
limit: 限制目标记录数量。
finalize: 最终处理函数 (对 reduce 返回结果进行最终整理后存入结果集合)
scope: 向 map、reduce、finalize 导入外部变量。
jsMode: 是否转换Bson格式在map和reduce执行间
verbose: 显示详细的时间统计信息。
下面我们来搞一个例子吧:
准备一些数据:
接下来我们演示如何统计各个班的学生数量
Map:
Map 函数必须调用 emit(key, value) 返回键值对,使用 this 访问当前待处理的 Document。
m = function(){
emit(this.classid,1);
}value 可以使用 JSON Object 传递 (支持多个属性值)。
例如:emit(this.classid, {count:1})
Reduce:
Reduce 函数接收的参数类似 Group 效果,将 Map 返回的键值序列组合成 { key, [value1,
value2, value3, value...] } 传递给 reduce。
r = function(key,values){
var x = 0;
values.forEach(function(v){x += v});
return x;
}Reduce 函数对这些 values 进行 "统计" 操作,返回结果可以使用 JSON Object。
Result:
mapReduce() 将结果存储在 "students_res" 表中。
Finalize:
利用 finalize() 我们可以对 reduce() 的结果做进一步处理。
f = function(key,value){
return {classid:key,count:value}
}我们再重新计算一次,看看结果:
Options:
我们还可以添加更多的控制细节。
db.runCommand({
mapreduce:"stu",
map:m,
reduce:r,
out:"stu_res",
finalize:f,
query:{age:{$gt:10}}
});可以看到先进行了过滤,只取 age>10 的数据,然后再进行统计,所以就没有 age=9 的数
据了。
另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
本文名称:MongoDB实战(4)MapReduce-创新互联
URL网址:http://ybzwz.com/article/dgjcdc.html