Java算法之最长公共子序列问题(LCS)实例分析-创新互联
本文实例讲述了Java算法之最长公共子序列问题(LCS)。分享给大家供大家参考,具体如下:
创新互联专注为客户提供全方位的互联网综合服务,包含不限于做网站、成都做网站、武邑网络推广、小程序开发、武邑网络营销、武邑企业策划、武邑品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们大的嘉奖;创新互联为所有大学生创业者提供武邑建站搭建服务,24小时服务热线:028-86922220,官方网址:www.cdcxhl.com问题描述:一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X= { x1, x2,…, xm},则另一序列Z= {z1, z2,…, zk}是X的子序列是指存在一个严格递增的下标序列 {i1, i2,…, ik},使得对于所有j=1,2,…,k有 Xij=Zj。例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X= { A, B, C, B, D, A, B}和Y= {B, D, C, A, B, A},则序列{B,C,A}是X和Y的一个公共子序列,序列{B,C,B,A}也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。给定两个序列X= {x1, x2, …, xm}和Y= {y1, y2, … , yn},要求找出X和Y的一个最长公共子序列。
问题解析:设X= { A, B, C, B, D, A, B},Y= {B, D, C, A, B, A}。求X,Y的最长公共子序列最容易想到的方法是穷举法。对X的多有子序列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列。由集合的性质知,元素为m的集合共有2^m个不同子序列,因此,穷举法需要指数级别的运算时间。进一步分解问题特性,最长公共子序列问题实际上具有最优子结构性质。
设序列X={x1,x2,……xm}和Y={y1,y2,……yn}的最长公共子序列为Z={z1,z2,……zk}。则有:
(1)若xm=yn,则zk=xm=yn,且zk-1是Xm-1和Yn-1的最长公共子序列。
(2)若xm!=yn且zk!=xm,则Z是Xm-1和Y的最长公共子序列。
(3)若xm!=yn且zk!=yn,则Z是X和Yn-1的最长公共子序列。
其中,Xm-1={x1,x2……xm-1},Yn-1={y1,y2……yn-1},Zk-1={z1,z2……zk-1}。
递推关系:用c[i][j]记录序列Xi和Yj的最长公共子序列的长度。其中,Xi={x1,x2……xi},Yj={y1,y2……yj}。当i=0或j=0时,空序列是xi和yj的最长公共子序列。此时,c[i][j]=0;当i,j>0,xi=yj时,c[i][j]=c[i-1][j-1]+1;当i,j>0,xi!=yj时,
c[i][j]=max{c[i][j-1],c[i-1][j]},由此建立递推关系如下:
构造最优解:由以上分析可知,要找出X={x1,x2,……xm}和Y={y1,y2,……yn}的最长公共子序列,可以按一下方式递归进行:当xm=yn时,找出xm-1和yn-1的最长公共子序列,然后在尾部加上xm(=yn)即可得X和Y的最长公共子序列。当Xm!=Yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者为X和Y的最长公共子序列。设数组b[i][j]记录c[i][j]的值由哪一个子问题的解得到的,从b[m][n]开始,依其值在数组b中搜索,当b[i][j]=1时,表示Xi和Yj的最长公共子序列是由Xi-1和Yj-1的最长公共子序列在尾部加上xi所得到的子序列。当b[i][j]=2时,表示Xi和Yj的最长公共子序列与Xi-1和Yj-1的最长公共子序列相同。当b[i][j]=3时,表示Xi和Yj的最长公共子序列与Xi和Yj-1的最长公共子序列相同。
代码如下:
package LCS; public class LCS { public static int[][] LCSLength ( String[] x, String[] y) { int m = x.length; int n = y.length; int[][] b = new int[x.length][y.length]; int[][] c = new int[x.length][y.length]; for(int i = 1; i < m; i++) { c[i][0] = 0; } for(int i = 1; i < n; i++) { c[0][i] = 0; } for(int i = 1; i < m; i++) { for(int j = 1; j < n; j++) { if(x[i] == y[j]) { c[i][j] = c[i-1][j-1] + 1; b[i][j] = 1; } else if(c[i-1][j] >= c[i][j-1]) { c[i][j] = c[i-1][j]; b[i][j] = 2; } else { c[i][j] = c[i][j-1]; b[i][j]=3; } } } return b; } public static void LCS(int[][] b, String[] x, int i, int j) { if(i == 0|| j == 0) return; if(b[i][j] == 1) { LCS(b,x,i - 1, j - 1); System.out.print(x[i] + " "); } else if(b[i][j] == 2) { LCS(b,x,i - 1, j); } else LCS(b,x,i, j-1); } public static void main(String args[]) { System.out.println("创新互联测试结果:"); String[] x = {" ","A", "B", "C", "B", "D", "A", "B"}; String[] y = {" ","B", "D", "C", "A", "B", "A"}; int[][] b = LCSLength(x, y); System.out.println("X和y的最长公共子序列是:"); LCS(b, x, x.length - 1, y.length - 1); } }
当前题目:Java算法之最长公共子序列问题(LCS)实例分析-创新互联
URL链接:http://ybzwz.com/article/dejepj.html